Olfactory proteins of Endoclita signifer larvae and their roles in host recognition

Author:

Hu Ping,Qiu Zhisong,Chen Xiao,Xu Yuan,SU Xiaoyan,Yang Zhende

Abstract

Abstract Background Endoclita signifer causes severe damage to eucalyptus plantations, and the larvae transfer to and damage eucalyptus accurately in mixed forests, suggesting that the larval olfactory system contributes to host selection. The olfactory proteins in the head and tegument of E. signifer larvae were previously identified. To identify the relationship between olfactory protein expression in the larval head the larvae head and the developmental expression dynamics, and its functions in further recognition of plant volatiles, the head transcriptomes of two instar larvae and the expression profiles of olfactory proteins in the instars after exposure to volatiles were studied. Results Eight odorant-binding proteins, six chemosensory proteins, three odorant receptors, three gustatory receptors, and 18 ionotropic receptors were identified. Half of the olfactory proteins were the most highly expressed in the young (5th) larval head, and EsigGOBP2, EsigGOBP4, EsigGOBP5, EsigCSP1, EsigCSP3, EsigGR1 and EsigGR3 were highly expressed and showed a specific expression pattern. In addition, after exposure to o-cymene, α-phellandrene, n-butyl ether, and 4-ethylacetophenone, EsigGR3 was downregulated significantly, and exposure to n-butyl ether caused EsigGR1 to be downregulated significantly. Conclusions Seven specific olfactory proteins may be important genes in larval olfactory recognition. Furthermore, based on the receptors that were downregulated after exposure to volatiles and the previous electrophysiological activity in the third larvae, we speculated that the ligand of EsigGR1 was n-butyl ether, and the ligands of the newly identified EsigGR3 are all electrophysiologically active compounds, which demonstrated host recognition in the third larvae of E. signifer. These results provide a way to find key plant volatiles recognized by the key olfactory proteins as new targets for pest control. Graphical Abstract

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guangxi Zhuang Autonomous Region

the Fund for Central Government Guide Development of Local Science and Technology

the Special Fund for Science and Technology Bases and Talents of Guangxi Zhuang Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Reference48 articles.

1. Yang X, Yang X, Xue D, Han H. The complete mitochondrial genome of Endoclita signifer (Lepidoptera, Hepialidae). Mitochondr DNA A DNA Mapp Seq Anal. 2016;27:4620–1.

2. Yang XH. Studies on the biological and ecological characteristics of Endoclita signifer. Beijing Forestry University; 2013.

3. Yang X, Luo Y, Wu Y, Zou D, Hu P, Wang J. Distribution and Damage of Endoclita signifer Walker, as an important wood borer pest insect on forest. For Pest Dis. 2021;40:34–40.

4. Yang XH. Biological ecology and control techniques of Endoclita signifer, an important pest of eucalyptus. Beijing: China Forestry Publishing House; 2017. p. 50–60.

5. Zhang X, Yang Z, Yang X, Ma H, Liu X, Hu P. Olfactory proteins and their expression profiles in the Eucalyptus pest Endoclita signifer larvae. Front Physiol. 2021;12: 682537. https://doi.org/10.3389/fphys.2021.682537.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3