Phosphorus leaching risk from black soil increased due to conversion of arid agricultural land to paddy land in northeast China

Author:

Xie Zi-jian,Zhu Dong,Wei Wei-wei,Ye Chun,Wang Hao,Li Chun-hua

Abstract

Abstract Background Land-use change from arid agricultural land to paddy land may increase soil phosphorus (P) leaching in the black soil region. However, little information is available for soil P leaching risk assessment from soil profiles due to the land-use conversion in the black soil region of northeast China. Results This study explored the effect of land-use change from arid agricultural land to paddy land on soil P leaching change point, P leaching risk and P fractions. Conversion from arid agricultural land to paddy land decrease soil P leaching change point (0–20 cm: 59.63 mg kg−1 vs. 35.35 mg kg−1; 20–40 cm: 24.31 mg kg−1 vs. 17.20 mg kg−1; 40–60 cm: 32.91 mg kg−1 vs. 10.45 mg kg−1); 30.9% of arid agricultural soils were at risk of P leaching into the shallow groundwater, compared to 87.5% of paddy soils, implying a high risk of P leaching after land-use conversion. P fraction analysis using the Hedley sequential extraction method showed that moderately active P, including NaOH-Pi, NaOH-Po, and HCl-Pi, were the dominant fractions in the tested soils. HCl-Pi and NaOH-Pi were the major P fraction of moderately active P in arid agricultural land and paddy land, respectively, indicating that land-use change leads to the conversion from Ca-bound P to P associated with Fe and Al. Conclusions The soil P leaching change point decreased due to land-use conversion from arid agricultural soils to paddy soils, which may lead to higher P leaching risk. Therefore, it is necessary to strengthen the management and control of soil P loss in areas with large-scaled conversion from arid agricultural land to paddy fields. Graphical Abstract

Funder

National Key Research and Development Program of China

the Open Research Fund of State Environmental Protection Key Laboratory for Lake Pollution Control

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3