Author:
Zhu Xiang-Mei,Tan Yang,Shi Yu-He,Li Qing,Zhu Jue,Liu Xiang-Dan,Tong Qiao-Zhen
Abstract
Abstract
Background
Every year, approximately 17 million people worldwide die due to coronary heart disease, with China ranking second in terms of the death toll. Myocardial ischemia-reperfusion injury (MIRI) significantly influences cardiac function and prognosis in cardiac surgery patients. Jiawei Danshen Decoction (JWDSD) is a traditional Chinese herbal prescription that has been used clinically for many years in China to treat MIRI. The underlying molecular mechanisms, however, remain unknown. To investigate the proteomic changes in myocardial tissue of rats given JWDSD for MIRI therapy-based proteomics.
Methods
MIRI rat model was created by ligating/releasing the left anterior descending coronary artery. For seven days, the drugs were administered twice daily. The model was created following the last drug administration. JWDSD's efficacy in improving MIRI was evaluated using biochemical markers and cardiac histology. Tandem mass tag-based quantitative proteomics (TMT) technology was also used to detect proteins in the extracted heart tissue. To analyze differentially expressed proteins (DEPs), bioinformatics analysis, including gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways, were employed. Furthermore, western blotting confirmed the potential targets regulated by JWDSD.
Results
The histopathologic characteristics and biochemical data showed JWDSD's protective effects on MIRI rats. A total of 4549 proteins were identified with FDR (false discovery rate) ≤1%. Twenty overlapping were identified (162 DEPs and 45 DEPs in Model/Control or JWDSD/Model group, respectively). Of these DEPs, 16 were regulated by JWDSD. GO analysis provided a summary of the deregulated protein expression in the categories of biological process (BP), cell component (CC), and molecular function (MF). KEGG enrichment analysis revealed that the signaling pathways of neutrophil extracellular trap formation, RNA polymerase, serotonergic synapse, and linoleic acid metabolism are all closely related to JWDSD effects in MIRI rats. Furthermore, T-cell lymphoma invasion and metastasis 1 (TIAM1) was validated using western blotting, and the results were consistent with proteomics data.
Conclusions
Our study suggests that JWDSD may exert therapeutic effects through multi-pathways regulation in MIRI treatment. This work may provide proteomics clues for continuing research on JWDSD in treating MIRI.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference38 articles.
1. Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T, et al. Mechanism of the hypoxia inducible factor1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning. Mole Med Rep. 2020;21(3):1527–36.
2. Zeng C, Jiang W, Zheng R, He C, Li J, Xing J, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PloS One. 2018;13(3):e0193845.
3. Chen YF, Chen WY, Chung CH, Kuo CL, Lee AS. Cardiac protection of Bauhinia championii against reperfusion injury. Environ Toxicol. 2020;35(7):774–82.
4. Li KP, Zhang HY, Xu XD, Yang M, Li TJ, Song ST. Recombinant Human Brain Natriuretic Peptide Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting CD4+ T Cell Proliferation via PI3K/AKT/mTOR Pathway Activation. Cardiovasc Therapeut. 2020;35(7):1–9.
5. Guan W, Liu Y, Liu Y, Wang Q, Ye HL, Cheng YG, et al. Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H2O2. Molecules. 2019;24(10):1911–24.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献