Long noncoding RNA Ftx regulates the protein expression profile in HCT116 human colon cancer cells

Author:

Jia Ruzhen,Song Lulu,Fei Zhiqiang,Qin Chengyong,Zhao Qi

Abstract

Abstract Background The long noncoding RNA (lncRNA) five prime to Xist (Ftx) is involved in distant metastasis in colorectal cancer (CRC). This study aimed to investigate Ftx alteration-induced proteomic changes in the highly metastatic CRC cell line HCT116. Methods Tandem mass tag (TMT)-based proteomics analysis was performed to detect the differential protein expression in Ftx-overexpressing and Ftx-silenced HCT116 cells. The differentially expressed proteins were classified and characterized by bioinformatics analyses, including gene ontology (GO) annotation, GO/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway/protein domain enrichment analyses, as well as hierarchical clustering. A total of 5471 proteins were quantified, and the proteins with |fold change|≥ 1.2 and p < 0.05 were identified as differentially expressed proteins in response to Ftx overexpression or silencing. Results The bioinformatics analyses revealed that the differentially expressed proteins were involved in a wide range of GO terms and KEGG signaling pathways and contained multiple protein domains. These terms, pathways, and protein domains were associated with tumorigenesis and metastasis in CRC. Conclusions Our results indicate that the alteration of Ftx expression induces proteomic changes in highly metastatic HCT116 cells, suggesting that Ftx and its downstream molecules and signaling pathways could be potential diagnostic biomarkers and therapeutic targets for metastatic CRC.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Shandong Science and Technology Development Plan

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3