Author:
Sun Xiangfei,Jiang Ying,Li Qingbao,Tan Qi,Dong Mingliang,Cai Bi’e,Zhang Di,Zhao Qi
Abstract
Abstract
Objective
This study aims to decode the proteomic signature of cardiomyocytes in response to lncRNA Ftx knockdown and overexpression via proteomic analysis, and to study the biological role of lncRNA Ftx in cardiomyocytes.
Methods
The expression level of the lncRNA Ftx in cardiomyocytes cultured in vitro was intervened, and the changes in protein levels in cardiomyocytes were quantitatively detected by liquid chromatography-mass spectrometry. The key molecules and pathways of the lncRNA-Ftx response were further examined by GO, KEGG, and protein interaction analysis.
Results
A total of 2828 proteins are quantified. With a 1.5-fold change threshold, 32 upregulated proteins and 49 downregulated proteins are identified in the lncRNA Ftx overexpression group, while 67 up-regulated proteins and 54 down-regulated proteins are identified in the lncRNA Ftx knockdown group. Functional clustering analysis of differential genes revealed that the lncRNA Ftx is involved in regulating cardiomyocyte apoptosis and ferroptosis and improving cellular energy metabolism. In addition, Hub genes such as ITGB1, HMGA2, STAT3, GSS, and LPCAT3 are regulated downstream by lncRNA Ftx.
Conclusion
This study demonstrates that lncRNA Ftx plays a vital role in cardiomyocytes and may be involved in the occurrence and development of various myocardial diseases. It provides a potential target for clinical protection of the myocardium and reversal of myocardial fibrosis.
Funder
Natural Science Foundation of Shandong Province
Medical and Health Science and Technology Development Project of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献