Predictive model of the first failure pattern in patients receiving definitive chemoradiotherapy for inoperable locally advanced non-small cell lung cancer (LA-NSCLC)

Author:

Zhu Xueru,Hou Runping,Li Xiaoyang,Jiang Chang,Xia Wuyan,Fu XiaolongORCID

Abstract

Abstract Purpose To analyze patterns of failure in patients with LA-NSCLC who received definitive chemoradiotherapy (CRT) and to build a nomogram for predicting the failure patterns in this population of patients. Materials and methods Clinicopathological data of patients with LA-NSCLC who received definitive chemoradiotherapy and follow-up between 2013 and 2016 in our hospital were collected. The endpoint was the first failure after definitive chemoradiotherapy. With using elastic net regression and 5-fold nested cross-validation, the optimal model with better generalization ability was selected. Based on the selected model and corresponding features, a nomogram prediction model was built. This model was also validated by ROC curves, calibration curve and decision curve analysis (DCA). Results With a median follow-up of 28 months, 100 patients experienced failure. There were 46 and 54 patients who experience local failure and distant failure, respectively. Predictive model including 9 factors (smoking, pathology, location, EGFR mutation, age, tumor diameter, clinical N stage, consolidation chemotherapy and radiation dose) was finally built with the best performance. The average area under the ROC curve (AUC) with 5-fold nested cross-validation was 0.719, which was better than any factors alone. The calibration curve revealed a satisfactory consistency between the predicted distant failure rates and the actual observations. DCA showed most of the threshold probabilities in this model were with good net benefits. Conclusion Clinicopathological factors could collaboratively predict failure patterns in patients with LA-NSCLC who are receiving definitive chemoradiotherapy. A nomogram was built and validated based on these factors, showing a potential predictive value in clinical practice.

Funder

Innovation Fund for PhD Students from Shanghai Jiao Tong University School of Medicine

National Key Research and Development Program of China

Project of multi-center clinical research, Shanghai Jiao Tong University School of Medicine

Shanghai Chest Hospital Project of Collaborative Innovation

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3