A non-invasive preoperative prediction model for predicting axillary lymph node metastasis in breast cancer based on a machine learning approach: combining ultrasonographic parameters and breast gamma specific imaging features

Author:

Cai Ranze,Deng Li,Zhang Hua,Zhang Hongwei,Wu Qian

Abstract

Abstract Background The most common route of breast cancer metastasis is through the mammary lymphatic network. An accurate assessment of the axillary lymph node (ALN) burden before surgery can avoid unnecessary axillary surgery, consequently preventing surgical complications. In this study, we aimed to develop a non-invasive prediction model incorporating breast specific gamma image (BSGI) features and ultrasonographic parameters to assess axillary lymph node status. Materials and methods Cohorts of breast cancer patients who underwent surgery between 2012 and 2021 were created (The training set included 1104 ultrasound images and 940 BSGI images from 235 patients, the test set included 568 ultrasound images and 296 BSGI images from 99 patients) for the development of the prediction model. six machine learning (ML) methods and recursive feature elimination were trained in the training set to create a strong prediction model. Based on the best-performing model, we created an online calculator that can make a linear predictor in patients easily accessible to clinicians. The receiver operating characteristic (ROC) and calibration curve are used to verify the model performance respectively and evaluate the clinical effectiveness of the model. Results Six ultrasonographic parameters (transverse diameter of tumour, longitudinal diameter of tumour, lymphatic echogenicity, transverse diameter of lymph nodes, longitudinal diameter of lymph nodes, lymphatic color Doppler flow imaging grade) and one BSGI features (axillary mass status) were selected based on the best-performing model. In the test set, the support vector machines’ model showed the best predictive ability (AUC = 0.794, sensitivity = 0.641, specificity = 0.8, PPV = 0.676, NPV = 0.774 and accuracy = 0.737). An online calculator was established for clinicians to predict patients’ risk of ALN metastasis (https://wuqian.shinyapps.io/shinybsgi/). The result in ROC showed the model could benefit from incorporating BSGI feature. Conclusion This study developed a non-invasive prediction model that incorporates variables using ML method and serves to clinically predict ALN metastasis and help in selection of the appropriate treatment option.

Funder

the Foundation of Zhongshan Hospital, Fudan University

the Natural Science Foundation of Xiamen City

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3