Abstract
Abstract
Background and purpose
To report on our clinical experience with a newly implemented workflow for radiotherapy (RT) emergency treatments, which allows for a fast treatment application outside the regular working-hours, and its clinical applicability.
Methods
Treatment planning of 18 emergency RT patients was carried out using diagnostic computed tomography (CT) without a dedicated RT simulation CT. The cone-beam CT (CBCT) deviations of the first RT treatment were analyzed regarding setup accuracy. Furthermore, feasibility of the “fast-track” workflow was evaluated with respect to dose deviations caused by different Hounsfield unit (HU) to relative electron density (rED) calibrations and RT treatment couch surface shapes via 3D gamma index analysis of exemplary treatment plans. The dosimetric uncertainty introduced by different CT calibrations was quantified.
Results
Mean patient setup vs. CBCT isocenter deviations were (0.49 ± 0.44) cm (x), (2.68 ± 1.63) cm (y) and (1.80 ± 1.06) cm (z) for lateral, longitudinal and vertical directions, respectively. Three out of four dose comparisons between the emergency RT plan calculated on the diagnostic CT and the same plan calculated on the treatment planning CT showed clinically acceptable gamma passing rates, when correcting for surface artifacts. The maximum difference of rED was 0.054, while most parts of the CT calibration curves coincided well.
Conclusion
In an emergency RT setting, the use of diagnostic CT data for treatment planning might be time-saving and was shown to be suitable for many cases, considering reproducibility of patient setup, accuracy of initial patient setup and accuracy of dose-calculation.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Oncology
Reference15 articles.
1. Christian E, Adamietz IA, Willich N, Schäfer U, Micke O, G. W. G. P. R. of the German Society for Radiation Oncology (DEGRO). Radiotherapy in oncological emergencies-final results of a patterns of care study in Germany, Austria and Switzerland. Acta Oncologica. 2008;47(1):81–9.
2. Donato V, Bonfili P, Bulzonetti N, Santarelli M, Osti MF, Tombolini V, Banelli E, Enrici RM. Radiation therapy for oncological emergencies. Anticancer Res. 2001;21(3C):2219–24.
3. Mitera G, Swaminath A, Wong S, Goh P, Robson S, Sinclair E, Danjoux C, Chow E. Radiotherapy for oncologic emergencies on weekends: examining reasons for treatment and patterns of practice at a Canadian cancer Centre. Curr Oncol. 2009;16(4):55.
4. Gao W, Nyflot MJ, Novak A, Sponseller PA, Jordan L, Carlson J, Kane G, Zeng J, Ford EC. Can emergent treatments result in more severe errors?: an analysis of a large institutional near-miss incident reporting database. Pract Radiat Oncol. 2015;5(5):319–24.
5. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–61.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献