An interpretable radiomics model to select patients for radiotherapy after surgery for WHO grade 2 meningiomas

Author:

Park Chae Jung,Choi Seo Hee,Eom Jihwan,Byun Hwa Kyung,Ahn Sung Soo,Chang Jong Hee,Kim Se Hoon,Lee Seung-Koo,Park Yae Won,Yoon Hong In

Abstract

Abstract Objectives This study investigated whether radiomic features can improve the prediction accuracy for tumor recurrence over clinicopathological features and if these features can be used to identify high-risk patients requiring adjuvant radiotherapy (ART) in WHO grade 2 meningiomas. Methods Preoperative magnetic resonance imaging (MRI) of 155 grade 2 meningioma patients with a median follow-up of 63.8 months were included and allocated to training (n = 92) and test sets (n = 63). After radiomic feature extraction (n = 200), least absolute shrinkage and selection operator feature selection with logistic regression classifier was performed to develop two models: (1) a clinicopathological model and (2) a combined clinicopathological and radiomic model. The probability of recurrence using the combined model was analyzed to identify candidates for ART. Results The combined clinicopathological and radiomics model exhibited superior performance for the prediction of recurrence compared with the clinicopathological model in the training set (area under the curve [AUC] 0.78 vs. 0.67, P = 0.042), which was also validated in the test set (AUC 0.77 vs. 0.61, P = 0.192). In patients with a high probability of recurrence by the combined model, the 5-year progression-free survival was significantly improved with ART (92% vs. 57%, P = 0.024), and the median time to recurrence was longer (54 vs. 17 months after surgery). Conclusions Radiomics significantly contributes added value in predicting recurrence when integrated with the clinicopathological features in patients with grade 2 meningiomas. Furthermore, the combined model can be applied to identify high-risk patients who require ART.

Funder

the National Research Foundation of Korea (NRF) grant funded by the Korea government

the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3