Radioprotective efficacy of plastic polymer against the toxicogenomic effects of radiopharmaceutical 18F-FDG on human lymphocytes

Author:

Lopes Nilson Benedito,Almeida Igor VivianORCID,Lopes Pedro Henrique Silvestre,Vicentini Veronica Elisa Pimenta

Abstract

Abstract Background Healthcare workers occupationally exposed to 18F-FDG cannot wear protective equipment, such as lead aprons, since the interaction between high energy radiation (511 keV) and metal increases the dose of radiation absorption. The objective of this study was to evaluate the shielding efficacy of a plastic polymer against the toxicogenomic effects of ionizing radiation in human lymphocytes, using cytokinesis-block micronucleus assays. Methods Human peripheral blood lymphocytes were isolated from three subjects and cultured under standard conditions. The cultures were exposed to 300 mCi of 18F-FDG at a distance of 10 cm for 10 min, in the absence of shielding or with lead, polymer, and lead + polymer shields. Results Lead shielding was found to increase the number of counts detected by Geiger-Müller radiation monitors as a consequence of the photoelectron effect. Conversely, the lead + polymer shield reduced the number of counts. The lead, polymer, and lead + polymer shields significantly reduced the frequency of micronuclei, nucleoplasmic bridges, and nuclear buds induced by ionizing radiation. Regarding cytotoxicity, only the lead + polymer shield re-established the cell cycle at the level observed for the negative control. Conclusions Lead aprons that are internally coated with polymer increased the radiological protection of individuals occupationally exposed to 18F-FDG PET/CT, especially during examinations.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Reference47 articles.

1. Alazzoni A, Gordon CL, Syed J, Natarajan MK, Rokoss M, Schwalm J-D, et al. Trial of radiation protection with a patient Lead shield and a novel, nonlead surgical cap for operators performing coronary angiography or intervention. Circ: Cardiovasc Interv. 2015;8:1–7.

2. Allen Junior LV, Popovich NG, Ansel HC. Formas Farmacêuticas e Sistemas de Liberação de Fármacos. 9th ed. Porto Alegre: Artmed; 2013.

3. Andreassi MG, Foffa I, Manfredi S, Botto N, Cioppa A, Picano E. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res/Fundam Mol Mech Mutagen. 2009;666:57–63.

4. Aoyama T. Radiation risk of Japanese and Chinese low level dose repeatedly irradiated population. Int J Occup Environ Health. 1989;11:432–42.

5. Attix FH. Introduction to radiological physics and radiation dosimetry. New York: A Wiley-Interscience Publication; 1986.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3