Neural network and spline-based regression for the prediction of salivary hypofunction in patients undergoing radiation therapy

Author:

Smith Derek K.,Clark Haley,Hovan Allan,Wu Jonn

Abstract

Abstract Background This study leverages a large retrospective cohort of head and neck cancer patients in order to develop machine learning models to predict radiation induced hyposalivation from dose-volume histograms of the parotid glands. Methods The pre and post-radiotherapy salivary flow rates of 510 head and neck cancer patients were used to fit three predictive models of salivary hypofunction, (1) the Lyman-Kutcher-Burman (LKB) model, (2) a spline-based model, (3) a neural network. A fourth LKB-type model using literature reported parameter values was included for reference. Predictive performance was evaluated using a cut-off dependent AUC analysis. Results The neural network model dominated the LKB models demonstrating better predictive performance at every cutoff with AUCs ranging from 0.75 to 0.83 depending on the cutoff selected. The spline-based model nearly dominated the LKB models with the fitted LKB model only performing better at the 0.55 cutoff. The AUCs for the spline model ranged from 0.75 to 0.84 depending on the cutoff chosen. The LKB models had the lowest predictive ability with AUCs ranging from 0.70 to 0.80 (fitted) and 0.67 to 0.77 (literature reported). Conclusion Our neural network model showed improved performance over the LKB and alternative machine learning approaches and provided clinically useful predictions of salivary hypofunction without relying on summary measures.

Funder

National Institutes of Health

American Cancer Society

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3