Evaluation of a highly refined prediction model in knowledge-based volumetric modulated arc therapy planning for cervical cancer

Author:

Wang Mingli,Gu Huikuan,Hu Jiang,Liang Jian,Xu Sisi,Qi Zhenyu

Abstract

Abstract Background and purpose To explore whether a highly refined dose volume histograms (DVH) prediction model can improve the accuracy and reliability of knowledge-based volumetric modulated arc therapy (VMAT) planning for cervical cancer. Methods and materials The proposed model underwent repeated refining through progressive training until the training samples increased from initial 25 prior plans up to 100 cases. The estimated DVHs derived from the prediction models of different runs of training were compared in 35 new cervical cancer patients to analyze the effect of such an interactive plan and model evolution method. The reliability and efficiency of knowledge-based planning (KBP) using this highly refined model in improving the consistency and quality of the VMAT plans were also evaluated. Results The prediction ability was reinforced with the increased number of refinements in terms of normal tissue sparing. With enhanced prediction accuracy, more than 60% of automatic plan-6 (AP-6) plans (22/35) can be directly approved for clinical treatment without any manual revision. The plan quality scores for clinically approved plans (CPs) and manual plans (MPs) were on average 89.02 ± 4.83 and 86.48 ± 3.92 (p < 0.001). Knowledge-based planning significantly reduced the Dmean and V18 Gy for kidney (L/R), the Dmean, V30 Gy, and V40 Gy for bladder, rectum, and femoral head (L/R). Conclusion The proposed model evolution method provides a practical way for the KBP to enhance its prediction ability with minimal human intervene. This highly refined prediction model can better guide KBP in improving the consistency and quality of the VMAT plans.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Guangzhou Science and Technology Program key projects

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3