Author:
Yuan Siqi,Chen Xinyuan,Liu Yuxiang,Zhu Ji,Men Kuo,Dai Jianrong
Abstract
Abstract
Background
Although magnetic resonance imaging (MRI)-to-computed tomography (CT) synthesis studies based on deep learning have significantly progressed, the similarity between synthetic CT (sCT) and real CT (rCT) has only been evaluated in image quality metrics (IQMs). To evaluate the similarity between synthetic CT (sCT) and real CT (rCT) comprehensively, we comprehensively evaluated IQMs and radiomic features for the first time.
Methods
This study enrolled 127 patients with nasopharyngeal carcinoma who underwent CT and MRI scans. Supervised-learning (Unet) and unsupervised-learning (CycleGAN) methods were applied to build MRI-to-CT synthesis models. The regions of interest (ROIs) included nasopharynx gross tumor volume (GTVnx), brainstem, parotid glands, and temporal lobes. The peak signal-to-noise ratio (PSNR), mean absolute error (MAE), root mean square error (RMSE), and structural similarity (SSIM) were used to evaluate image quality. Additionally, 837 radiomic features were extracted for each ROI, and the correlation was evaluated using the concordance correlation coefficient (CCC).
Results
The MAE, RMSE, SSIM, and PSNR of the body were 91.99, 187.12, 0.97, and 51.15 for Unet and 108.30, 211.63, 0.96, and 49.84 for CycleGAN. For the metrics, Unet was superior to CycleGAN (P < 0.05). For the radiomic features, the percentage of four levels (i.e., excellent, good, moderate, and poor, respectively) were as follows: GTVnx, 8.5%, 14.6%, 26.5%, and 50.4% for Unet and 12.3%, 25%, 38.4%, and 24.4% for CycleGAN; other ROIs, 5.44% ± 3.27%, 5.56% ± 2.92%, 21.38% ± 6.91%, and 67.58% ± 8.96% for Unet and 5.16% ± 1.69%, 3.5% ± 1.52%, 12.68% ± 7.51%, and 78.62% ± 8.57% for CycleGAN.
Conclusions
Unet-sCT was superior to CycleGAN-sCT for the IQMs. However, neither exhibited absolute superiority in radiomic features, and both were far less similar to rCT. Therefore, further work is required to improve the radiomic similarity for MRI-to-CT synthesis.
Trial registration: This study was a retrospective study, so it was free from registration.
Funder
the National Natural Science Foundation of China
National Natural Science Foundation of China
the CAMS Innovation Fund for Medical Sciences
Beijing Natural Science Foundation
the Beijing Hope Run Special Fund of Cancer Foundation of China
the Beijing Nova Program
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology