Comprehensive evaluation of similarity between synthetic and real CT images for nasopharyngeal carcinoma

Author:

Yuan Siqi,Chen Xinyuan,Liu Yuxiang,Zhu Ji,Men Kuo,Dai Jianrong

Abstract

Abstract Background Although magnetic resonance imaging (MRI)-to-computed tomography (CT) synthesis studies based on deep learning have significantly progressed, the similarity between synthetic CT (sCT) and real CT (rCT) has only been evaluated in image quality metrics (IQMs). To evaluate the similarity between synthetic CT (sCT) and real CT (rCT) comprehensively, we comprehensively evaluated IQMs and radiomic features for the first time. Methods This study enrolled 127 patients with nasopharyngeal carcinoma who underwent CT and MRI scans. Supervised-learning (Unet) and unsupervised-learning (CycleGAN) methods were applied to build MRI-to-CT synthesis models. The regions of interest (ROIs) included nasopharynx gross tumor volume (GTVnx), brainstem, parotid glands, and temporal lobes. The peak signal-to-noise ratio (PSNR), mean absolute error (MAE), root mean square error (RMSE), and structural similarity (SSIM) were used to evaluate image quality. Additionally, 837 radiomic features were extracted for each ROI, and the correlation was evaluated using the concordance correlation coefficient (CCC). Results The MAE, RMSE, SSIM, and PSNR of the body were 91.99, 187.12, 0.97, and 51.15 for Unet and 108.30, 211.63, 0.96, and 49.84 for CycleGAN. For the metrics, Unet was superior to CycleGAN (P < 0.05). For the radiomic features, the percentage of four levels (i.e., excellent, good, moderate, and poor, respectively) were as follows: GTVnx, 8.5%, 14.6%, 26.5%, and 50.4% for Unet and 12.3%, 25%, 38.4%, and 24.4% for CycleGAN; other ROIs, 5.44% ± 3.27%, 5.56% ± 2.92%, 21.38% ± 6.91%, and 67.58% ± 8.96% for Unet and 5.16% ± 1.69%, 3.5% ± 1.52%, 12.68% ± 7.51%, and 78.62% ± 8.57% for CycleGAN. Conclusions Unet-sCT was superior to CycleGAN-sCT for the IQMs. However, neither exhibited absolute superiority in radiomic features, and both were far less similar to rCT. Therefore, further work is required to improve the radiomic similarity for MRI-to-CT synthesis. Trial registration: This study was a retrospective study, so it was free from registration.

Funder

the National Natural Science Foundation of China

National Natural Science Foundation of China

the CAMS Innovation Fund for Medical Sciences

Beijing Natural Science Foundation

the Beijing Hope Run Special Fund of Cancer Foundation of China

the Beijing Nova Program

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3