A PET/CT radiomics model for predicting distant metastasis in early-stage non–small cell lung cancer patients treated with stereotactic body radiotherapy: a multicentric study

Author:

Yu Lu,Zhang Zhen,Yi HeQing,Wang Jin,Li Junyi,Wang Xiaofeng,Bai Hui,Ge Hong,Zheng Xiaoli,Ni Jianjiao,Qi Haoran,Guan Yong,Xu Wengui,Zhu Zhengfei,Xing Ligang,Dekker Andre,Wee Leonard,Traverso Alberto,Ye Zhaoxiang,Yuan Zhiyong

Abstract

Abstract Objectives Stereotactic body radiotherapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer (NSCLC) who are unfit for surgery. Some patients may experience distant metastasis. This study aimed to develop and validate a radiomics model for predicting distant metastasis in patients with early-stage NSCLC treated with SBRT. Methods Patients at five institutions were enrolled in this study. Radiomics features were extracted based on the PET/CT images. After feature selection in the training set (from Tianjin), CT-based and PET-based radiomics signatures were built. Models based on CT and PET signatures were built and validated using external datasets (from Zhejiang, Zhengzhou, Shandong, and Shanghai). An integrated model that included CT and PET radiomic signatures was developed. The performance of the proposed model was evaluated in terms of its discrimination, calibration, and clinical utility. Multivariate logistic regression was used to calculate the probability of distant metastases. The cutoff value was obtained using the receiver operator characteristic curve (ROC), and the patients were divided into high- and low-risk groups. Kaplan-Meier analysis was used to evaluate the distant metastasis-free survival (DMFS) of different risk groups. Results In total, 228 patients were enrolled. The median follow-up time was 31.4 (2.0-111.4) months. The model based on CT radiomics signatures had an area under the curve (AUC) of 0.819 in the training set (n = 139) and 0.786 in the external dataset (n = 89). The PET radiomics model had an AUC of 0.763 for the training set and 0.804 for the external dataset. The model combining CT and PET radiomics had an AUC of 0.835 for the training set and 0.819 for the external dataset. The combined model showed a moderate calibration and a positive net benefit. When the probability of distant metastasis was greater than 0.19, the patient was considered to be at high risk. The DMFS of patients with high- and low-risk was significantly stratified (P < 0.001). Conclusions The proposed PET/CT radiomics model can be used to predict distant metastasis in patients with early-stage NSCLC treated with SBRT and provide a reference for clinical decision-making. Plain language summary In this study, the model was established by combining CT and PET radiomics signatures in a moderate-quantity training cohort of early-stage NSCLC patients treated with SBRT and was successfully validated in independent cohorts. Physicians could use this easy-to-use model to assess the risk of distant metastasis after SBRT. Identifying subgroups of patients with different risk factors for distant metastasis is useful for guiding personalized treatment approaches.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipal Science and Technology Bureau

Cancer Precision Radiotherapy Spark Program of China International Medical Foundation

Construction Project of Cancer Precision Diagnosis and Drug Treatment Technology, TMUCIH

Wu Jieping Medical Foundation

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3