Analytical setup margin for spinal stereotactic body radiotherapy based on measured errors

Author:

Copeland AudreyORCID,Barron Addie,Fontenot Jonas

Abstract

Abstract Background No consensus currently exists about the correct margin size to use for spinal SBRT. Margins have been proposed to account for various errors individually, but not with all errors combined to result in a single margin value. The purpose of this work was to determine a setup margin for five-fraction spinal SBRT based on known errors during radiotherapy to achieve at least 90% coverage of the clinical target volume with the prescription dose for at least 90% of patients and not exceed a 30 Gy point dose or 23 Gy to 10% of the spinal cord subvolume. Methods The random and systematic error components of intrafraction motion, residual setup error, and end-to-end system accuracy were measured. The patient’s surface displacement was measured to quantify intrafraction motion, the residual setup error was quantified by re-registering accepted daily cone beam computed tomography setup images, and the displacement between measured and planned dose profiles in a phantom quantified the end-to-end system accuracy. These errors and parameters were used to identify the minimum acceptable margin size. The margin recommendation was validated by assessing dose delivery across 140 simulated patient plans suffering from various random shifts representative of the measured errors. Results The errors were quantified in three dimensions and the analytical margin generated was 2.4 mm. With this margin applied in the superior/inferior direction only, at least 90% of the CTV was covered with the prescription dose for 96% of the 140 patients simulated with minimal negative effect on the spinal cord dose levels. Conclusions The findings of this work support that a 2.4 mm margin applied in the superior/inferior direction can achieve at least 90% coverage of the CTV for at least 90% of dual-arc volumetric modulated arc therapy spinal SBRT patients in the presence of errors when immobilized with vacuum bags.

Funder

Elekta

Mary Bird Perkins Cancer Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3