Author:
Zhu Ji,Chen Xinyuan,Liu Yuxiang,Yang Bining,Wei Ran,Qin Shirui,Yang Zhuanbo,Hu Zhihui,Dai Jianrong,Men Kuo
Abstract
Abstract
Purpose
This study was to improve image quality for high-speed MR imaging using a deep learning method for online adaptive radiotherapy in prostate cancer. We then evaluated its benefits on image registration.
Methods
Sixty pairs of 1.5 T MR images acquired with an MR-linac were enrolled. The data included low-speed, high-quality (LSHQ), and high-speed low-quality (HSLQ) MR images. We proposed a CycleGAN, which is based on the data augmentation technique, to learn the mapping between the HSLQ and LSHQ images and then generate synthetic LSHQ (synLSHQ) images from the HSLQ images. Five-fold cross-validation was employed to test the CycleGAN model. The normalized mean absolute error (nMAE), peak signal-to-noise ratio (PSNR), structural similarity index measurement (SSIM), and edge keeping index (EKI) were calculated to determine image quality. The Jacobian determinant value (JDV), Dice similarity coefficient (DSC), and mean distance to agreement (MDA) were used to analyze deformable registration.
Results
Compared with the LSHQ, the proposed synLSHQ achieved comparable image quality and reduced imaging time by ~ 66%. Compared with the HSLQ, the synLSHQ had better image quality with improvement of 57%, 3.4%, 26.9%, and 3.6% for nMAE, SSIM, PSNR, and EKI, respectively. Furthermore, the synLSHQ enhanced registration accuracy with a superior mean JDV (6%) and preferable DSC and MDA values compared with HSLQ.
Conclusion
The proposed method can generate high-quality images from high-speed scanning sequences. As a result, it shows potential to shorten the scan time while ensuring the accuracy of radiotherapy.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献