The impact of multicentric datasets for the automated tumor delineation in primary prostate cancer using convolutional neural networks on 18F-PSMA-1007 PET

Author:

Holzschuh Julius C.,Mix Michael,Freitag Martin T.,Hölscher Tobias,Braune Anja,Kotzerke Jörg,Vrachimis Alexis,Doolan Paul,Ilhan Harun,Marinescu Ioana M.,Spohn Simon K. B.,Fechter Tobias,Kuhn Dejan,Gratzke Christian,Grosu Radu,Grosu Anca-Ligia,Zamboglou C.

Abstract

Abstract Purpose Convolutional Neural Networks (CNNs) have emerged as transformative tools in the field of radiation oncology, significantly advancing the precision of contouring practices. However, the adaptability of these algorithms across diverse scanners, institutions, and imaging protocols remains a considerable obstacle. This study aims to investigate the effects of incorporating institution-specific datasets into the training regimen of CNNs to assess their generalization ability in real-world clinical environments. Focusing on a data-centric analysis, the influence of varying multi- and single center training approaches on algorithm performance is conducted. Methods nnU-Net is trained using a dataset comprising 161 18F-PSMA-1007 PET images collected from four distinct institutions (Freiburg: n = 96, Munich: n = 19, Cyprus: n = 32, Dresden: n = 14). The dataset is partitioned such that data from each center are systematically excluded from training and used solely for testing to assess the model's generalizability and adaptability to data from unfamiliar sources. Performance is compared through a 5-Fold Cross-Validation, providing a detailed comparison between models trained on datasets from single centers to those trained on aggregated multi-center datasets. Dice Similarity Score, Hausdorff distance and volumetric analysis are used as primary evaluation metrics. Results The mixed training approach yielded a median DSC of 0.76 (IQR: 0.64–0.84) in a five-fold cross-validation, showing no significant differences (p = 0.18) compared to models trained with data exclusion from each center, which performed with a median DSC of 0.74 (IQR: 0.56–0.86). Significant performance improvements regarding multi-center training were observed for the Dresden cohort (multi-center median DSC 0.71, IQR: 0.58–0.80 vs. single-center 0.68, IQR: 0.50–0.80, p < 0.001) and Cyprus cohort (multi-center 0.74, IQR: 0.62–0.83 vs. single-center 0.72, IQR: 0.54–0.82, p < 0.01). While Munich and Freiburg also showed performance improvements with multi-center training, results showed no statistical significance (Munich: multi-center DSC 0.74, IQR: 0.60–0.80 vs. single-center 0.72, IQR: 0.59–0.82, p > 0.05; Freiburg: multi-center 0.78, IQR: 0.53–0.87 vs. single-center 0.71, IQR: 0.53–0.83, p = 0.23). Conclusion CNNs trained for auto contouring intraprostatic GTV in 18F-PSMA-1007 PET on a diverse dataset from multiple centers mostly generalize well to unseen data from other centers. Training on a multicentric dataset can improve performance compared to training exclusively with a single-center dataset regarding intraprostatic 18F-PSMA-1007 PET GTV segmentation. The segmentation performance of the same CNN can vary depending on the dataset employed for training and testing.

Funder

DKFZ Clinician Scientist Program, supported by the Dieter Morszeck Foundation

Agora 3.0 project

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3