Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery

Author:

Chung Seung Yeun,Chang Jee Suk,Choi Min Seo,Chang Yongjin,Choi Byong Su,Chun Jaehee,Keum Ki Chang,Kim Jin Sung,Kim Yong Bae

Abstract

Abstract Background In breast cancer patients receiving radiotherapy (RT), accurate target delineation and reduction of radiation doses to the nearby normal organs is important. However, manual clinical target volume (CTV) and organs-at-risk (OARs) segmentation for treatment planning increases physicians’ workload and inter-physician variability considerably. In this study, we evaluated the potential benefits of deep learning-based auto-segmented contours by comparing them to manually delineated contours for breast cancer patients. Methods CTVs for bilateral breasts, regional lymph nodes, and OARs (including the heart, lungs, esophagus, spinal cord, and thyroid) were manually delineated on planning computed tomography scans of 111 breast cancer patients who received breast-conserving surgery. Subsequently, a two-stage convolutional neural network algorithm was used. Quantitative metrics, including the Dice similarity coefficient (DSC) and 95% Hausdorff distance, and qualitative scoring by two panels from 10 institutions were used for analysis. Inter-observer variability and delineation time were assessed; furthermore, dose-volume histograms and dosimetric parameters were also analyzed using another set of patient data. Results The correlation between the auto-segmented and manual contours was acceptable for OARs, with a mean DSC higher than 0.80 for all OARs. In addition, the CTVs showed favorable results, with mean DSCs higher than 0.70 for all breast and regional lymph node CTVs. Furthermore, qualitative subjective scoring showed that the results were acceptable for all CTVs and OARs, with a median score of at least 8 (possible range: 0–10) for (1) the differences between manual and auto-segmented contours and (2) the extent to which auto-segmentation would assist physicians in clinical practice. The differences in dosimetric parameters between the auto-segmented and manual contours were minimal. Conclusions The feasibility of deep learning-based auto-segmentation in breast RT planning was demonstrated. Although deep learning-based auto-segmentation cannot be a substitute for radiation oncologists, it is a useful tool with excellent potential in assisting radiation oncologists in the future. Trial registration Retrospectively registered.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3