Author:
Han Ce,Zhang Ji,Yu Bing,Zheng Haoze,Wu Yibo,Lin Zhixi,Ning Boda,Yi Jinling,Xie Congying,Jin Xiance
Abstract
Abstract
Purpose
To investigate the feasibility and performance of deep learning (DL) models combined with plan complexity (PC) and dosiomics features in the patient-specific quality assurance (PSQA) for patients underwent volumetric modulated arc therapy (VMAT).
Methods
Total of 201 VMAT plans with measured PSQA results were retrospectively enrolled and divided into training and testing sets randomly at 7:3. PC metrics were calculated using house-built algorithm based on Matlab. Dosiomics features were extracted and selected using Random Forest (RF) from planning target volume (PTV) and overlap regions with 3D dose distributions. The top 50 dosiomics and 5 PC features were selected based on feature importance screening. A DL DenseNet was adapted and trained for the PSQA prediction.
Results
The measured average gamma passing rate (GPR) of these VMAT plans was 97.94% ± 1.87%, 94.33% ± 3.22%, and 87.27% ± 4.81% at the criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. Models with PC features alone demonstrated the lowest area under curve (AUC). The AUC and sensitivity of PC and dosiomics (D) combined model at 2%/2 mm were 0.915 and 0.833, respectively. The AUCs of DL models were improved from 0.943, 0.849, 0.841 to 0.948, 0.890, 0.942 in the combined models (PC + D + DL) at 3%/3 mm, 3%/2 mm and 2%/2 mm, respectively. A best AUC of 0.942 with a sensitivity, specificity and accuracy of 100%, 81.8%, and 83.6% was achieved with combined model (PC + D + DL) at 2%/2 mm.
Conclusions
Integrating DL with dosiomics and PC metrics is promising in the prediction of GPRs in PSQA for patients underwent VMAT.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献