Integrating plan complexity and dosiomics features with deep learning in patient-specific quality assurance for volumetric modulated arc therapy

Author:

Han Ce,Zhang Ji,Yu Bing,Zheng Haoze,Wu Yibo,Lin Zhixi,Ning Boda,Yi Jinling,Xie Congying,Jin Xiance

Abstract

Abstract Purpose To investigate the feasibility and performance of deep learning (DL) models combined with plan complexity (PC) and dosiomics features in the patient-specific quality assurance (PSQA) for patients underwent volumetric modulated arc therapy (VMAT). Methods Total of 201 VMAT plans with measured PSQA results were retrospectively enrolled and divided into training and testing sets randomly at 7:3. PC metrics were calculated using house-built algorithm based on Matlab. Dosiomics features were extracted and selected using Random Forest (RF) from planning target volume (PTV) and overlap regions with 3D dose distributions. The top 50 dosiomics and 5 PC features were selected based on feature importance screening. A DL DenseNet was adapted and trained for the PSQA prediction. Results The measured average gamma passing rate (GPR) of these VMAT plans was 97.94% ± 1.87%, 94.33% ± 3.22%, and 87.27% ± 4.81% at the criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. Models with PC features alone demonstrated the lowest area under curve (AUC). The AUC and sensitivity of PC and dosiomics (D) combined model at 2%/2 mm were 0.915 and 0.833, respectively. The AUCs of DL models were improved from 0.943, 0.849, 0.841 to 0.948, 0.890, 0.942 in the combined models (PC + D + DL) at 3%/3 mm, 3%/2 mm and 2%/2 mm, respectively. A best AUC of 0.942 with a sensitivity, specificity and accuracy of 100%, 81.8%, and 83.6% was achieved with combined model (PC + D + DL) at 2%/2 mm. Conclusions Integrating DL with dosiomics and PC metrics is promising in the prediction of GPRs in PSQA for patients underwent VMAT.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3