Determination of enantiomer impurity in Bortezomib lyo injection formulation by using normal-phase liquid chromatography

Author:

Najana Sanni Babu,Bollikolla Hari Babu

Abstract

Abstract Background A highly stereo-specific liquid chromatographic technique was built up and authenticated to quantify the (1S,2R-enantiomer) impurity in Bortezomib lyo injection formulation. The separation was achieved on Chiral Pak ID-3 (3 μm, 4.6 × 250 mm) column (“amylose-based 3-chlorophenylcarbamate” chiral stationary phase) through a movable segment consisting of n-heptane, 2-propanol, ethyl alcohol, and TFA (82:15:3:0.1, v/v/v/v) at a flow rate of 0.6 mL/min. Column temperature preserved 25 °C, injection level 20 μL, sample cooler temperature ambient, and detection wavelength 270 nm. Results The retention time of (1S,2R-enantiomer) impurity and Bortezomib was determined 10.57 and 17.98 min, respectively. The resolution between (1S,2R-enantiomer) impurity and Bortezomib was found to be 4.2. The acceptance limit of the (1S,2R-enantiomer) impurity is 0.5%. The established method was authenticated as per ICH guidelines in respect of precision, accuracy, sensitivity, linearity, specificity, ruggedness, and robustness. The minimum quantity of the sample required for detection (LOD) was observed at 0.282 μg per mL and similarly the quantifying sample (LOQ) was observed to be 0.896 μg per mL. Conclusion The proposed normal phase-HPLC method that can quantify (1S,2R-enantiomer) impurity in Bortezomib lyo injection formulation at trace level concentration has been urbanized and authenticated as per ICH guidelines. The effectiveness of the technique was ensured by the specificity, exactitude, linearity, and accuracy. Hence, the method well suit for their intended purposes and can be successfully useful for regular analysis in laboratories and is suitable for the quality control.

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. “Bortezomib monograph for professionals”. Drugs.com. Retrieved 13 October 2019.

2. “Velcade”. European Medicines Agency. 17 September 2018. Retrieved 13 October 2019.

3. Adams J, Stein R (1996) Novel inhibitors of the proteasome and their therapeutic use in inflammation. Annu Rep Med Chem 31(C):279–288

4. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360

5. Adams J, Ma Y, Stein R, Baevsky M, Grenier L, Plamondon L (1996) Boronic ester and acid compounds, synthesis and uses. US, 1448.012TW01

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3