Antirheumatoid arthritis and cellular uptake study of cefuroxime axetil-loaded boswellic acids nanoparticles on RAW 264.7 cells

Author:

Rani Gitika,Rohilla SeemaORCID,Rohilla Ankur,Kumar Vanish,Kumar Ishab

Abstract

Abstract Background The present study revealed the grafting of extracted oleo gum resin of Boswellia serrata with polyacrylamide by conventional method with a principle of radical polymerization by using potassium per sulfate/ascorbic acid as redox initiator. A series of copolymer were synthesized using varying concentration of acrylamide at varying temperature. The optimum ratio for grafting was selected (1:2.5), on the basis of percent grafting and grafting efficiency. The grafted gum was further used as a nanocarrier to encapsulate cefuroxime axetil for their sustained release. Then, the nanoparticles were further analyzed by FT-IR, scanning electron microscopy, and DLS. The encapsulation efficiency (%), loading capacity (%) and drug content (%) was also calculated. Result The optimized nanoparticles have shown spherical morphology with dimension of 209.4 ± 20.46 nm along with entrapment efficiency (62.47 ± 4.23%), loading capacity (33.57 ± 3.01%) and drug content (89.35 ± 6.47%). The prepared nanoparticles had found to be more stable at 4 °C. The experiential results rationalize the effectiveness of cefuroxime axetil-loaded boswellic acid nanoparticles owing to higher cellular uptake, nonstop intercellular drug withholding and improved antiproliferative effect by initiating apoptosis. Conclusion The significant anti-arthritic effect of developed nanoparticles may be endorsed due to its dimension, encapsulation efficiency, and long-lasting drug release profile. Thus, the developed nanoparticles may assume to be a hopeful formulation for rheumatoid arthritis, which requires further investigation and may recommend a novel track to arthritis patients.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3