QSAR, simulation techniques, and ADMET/pharmacokinetics assessment of a set of compounds that target MAO-B as anti-Alzheimer agent

Author:

Ajala AbduljelilORCID,Uzairu AdamuORCID,Shallangwa Gideon A.ORCID,Abechi Stephen E.ORCID

Abstract

Abstract Background Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a progressive neurodegenerative disorder that gradually affects cognitive function and eventually causes death. Most approved drugs can only treat the disease alleviating the disease symptoms; therefore, there is a need to develop drugs that can treat this illness holistically. The medical community is searching for new drugs and new drug targets to cure this disease. In this study, QSAR, molecular docking evaluation, and ADMET/pharmacokinetics assessment were used as modeling methods to identify the compounds with outstanding physicochemical properties. Results The 37 MAO-B compounds were screened using the aforementioned methods and yielded a model with the following molecular properties: AATS1v, AATS3v, GATS4m, and GATS6e. Good statistical values were R2train = 0.69, R2adj = 0.63, R2pred = 0.57, LOF = 0.23, and RMSE = 0.38. The model was validated using an evaluation set that confirmed its robustness. The molecular docking was also utilized using crystal structure of human monoamine oxidase B in complex with chlorophenylchromone-carboxamide with ID code of 6FW0, and three compounds were identified with outstanding high binding affinity (13 = − 30.51 kcal mol−1, 31 = − 31.85 kcal mol−1, and 33 = − 33.70 kcal mol−1), and better than the Eldepryl (referenced) drug (− 11.40 kcal mol−1). Conclusions These three compounds (13, 31, and 33) were analyzed for ADMET/pharmacokinetics evaluation and found worthy of further analysis as promising drug candidates to cure AD and could also serve as a template to design several monoamine oxidase B inhibitors in the future to cure AD.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3