Development of novel gradient RP-HPLC method for separation of dapagliflozin and its process-related impurities: insight into stability profile and degradation pathway, identification of degradants using LCMS

Author:

Sunkara BhawaniORCID,Tummalapalli Naga Venkata Ganesh Kumar

Abstract

Abstract Background In the dapagliflozin (DPF) synthesis, 5-Bromo-2-chlorobenzoic acid (5-BC impurity) and 4-Bromo-1-chloro-2-(4-ethoxybenzyl) benzene (4-BC impurity) are used as starting and reagent sources, respectively. The presence of 5-BC and 4-BC impurities in DPF could potentially affect the effectiveness of the final DPF product. The purpose of this investigation was to develop a stability indicating HPLC methodology for the separation of DPF, its process-related impurities and degradants. The method of analysis was developed on Xbridge Phenyl C18 column of dimensions, 250 × 4.6 mm, 5 μm with gradient elution using mobile phase made up of 0.05% aqueous trifluoroacetic acid and acetonitrile (AcN). Results The method proposed indicates a good linearity (R2 = 0.9996 and 0.9993), good system precision (RSD ≤ 2%), good method precision (RSD ≤ 2%), accuracy (50–150%), LOD (0.000053 ppm and 0.0000165 ppm) and LOQ (0.00016 ppm and 0.00005 ppm) for 4-BC impurity and 5-BC impurity, respectively. LC–MS was used to detect and characterise degradants that were obtained in acid and base condition were identified and characterised. A comparison of the fragmentation pattern of the [M + H] + ions of DPF and its degradation products revealed the most likely processes for the generation of degradation products. Conclusion DPF sample quality can be evaluated using the suggested method for the presence of 4-BC impurity, 5-BC impurity and 2-(3-(4-ethoxy benzyl)-4-chloro phenyl)-tetrahydro-6-(hydroxy methyl)-2H-pyran-3,4,5-triol.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3