Formulation and development of floating multiple-unit minitablets of Nimodipine without using a gas-generating agent: in vitro and in vivo characterization

Author:

Panda M.,Rao M. E. B.,Patra C. N.,Panda J.,Panigrahi K. C.,Patro G.

Abstract

Abstract Background Floating drug delivery systems have been reported for different active pharmaceutical ingredients as single-unit tablets with gas-generating agents. In this present research, the formulation of floating multiple-unit minitablets of Nimodipine without using gas-generating agent was attempted with an objective of increased residence time, sustain-release and improved oral bioavailability. Solid dispersion with different ratios (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5) of drug with the lipophilic carrier such as Compritol ATO 888, Gelucire 43/01, G39/01 and Precirol ATO 05 was formulated using melt granulation technique. The adsorbent Sylysia 350 to lipophilic carrier is maintained at 1:1. The granules were compressed into minitablets weighing 15 mg and were filled into a ‘0’ size capsule. Results Differential scanning calorimetry study justified no interaction of the drug with excipients. The formulations which exhibited desirable flow property, floating lag time less than 1 min and floating time of 12 h were further characterized for various post-compression parameters. The optimized single-dose (capsule) of floating multiple-unit minitablets of Nimodipine consisting of 60 mg of drug, 120 mg of G43/01 and 120 mg of Sylysia 350 showed an average of floating lag time within 24.48 s, floating time of 14.32 h and sustained-release up to 12 h. Pharmacokinetic study of the optimized formulation (F9) showed nearly 2.5 times increase in area under the curve with increased residence time in comparison to aqueous suspension of Nimodipine. The stability study revealed no significant change in various parameters before and after storage. Conclusion Hence, gelucire 43/01-based multiple-unit minitablets of Nimodipine can be considered a promising approach for sustaining the drug release with gastric retention for 12 h without using gas-generating agent.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3