nCoV-19 therapeutics using cucurbitacin I structural derivatives: an in silico approach

Author:

Shrestha Ram Lal Swagat,Marasini Bishnu Prasad,Subin Jhashanath Adhikari

Abstract

Abstract Background Cucurbitacins are present in some common vegetables as secondary metabolites and are used by the plants against harmful microbes. Exploration of this capability of natural product based substances against wide variety of microbes seems relevant due to the ease of availability of the resources and safety. In this regard, considering the current pandemic, the antiviral properties of these molecules with a subset of Cucurbitacin I structural derivatives have been screened. The inhibition potential of the phytochemicals was assessed by the stability of the protein–ligand complex formed with the nucleocapsid protein (PDB ID: 7CDZ) of SARS-CoV-2 by computational methods. The proposition of an alternate antiviral candidate that is cost-effective and efficient relative to existing formulations is the main objective of this work. Results Server-based molecular docking experiments revealed CBN19 (PubChem CID: 125125068) as a hit candidate among 101 test compounds, a reference molecule (K31), and 5 FDA-approved drugs in terms of binding affinities sorted out based on total energies. The molecular dynamics simulations (MDS) showed moderate stability of the protein-CBN19 complex as implied by various geometrical parameters RMSD, Rg, RMSF, SASA and hydrogen bond count. The ligand RMSD of 3.0 ± 0.5 Å, RMSF of Cα of protein with less than 5 Å, and smooth nature of SASA and Rg curves were calculated for the adduct. The binding free energy (− 47.19 ± 6.24 kcal/mol) extracted from the MDS trajectory using the MMGBSA method indicated spontaneity of the reaction between CBN19 and the protein. The multiple ADMET studies of the phytochemicals predicted some drug-like properties with minimal toxicity that mandate experimental verification. Conclusions Based on all the preliminary in silico results, Cucurbitacin, CBN19 could be proposed as a potential inhibitor of nucleocapsid protein theoretically capable of curing the disease. The proposed molecule is recommended for further in vitro and in vivo trials in the quest to develop effective and alternate therapeutics from plant-based resources against COVID-19.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3