Screening of polysaccharides from fruit pulp of Ziziphus mauritiana L. and Artocarpus heterophyllus L. as natural mucoadhesives

Author:

Ray PriyankaORCID,Chatterjee Sumana,Saha Prerona

Abstract

Abstract Background Mucoadhesive polymers are applicable for improving the delivery of drug by prolonging the residence time and time of contact of the dosage form with the mucous membrane. Mucoadhesion may be defined as a process where the polymer substance gets adhered either to the biological substrate or synthetic or to a natural macromolecule, or to the mucus membrane. The natural polymers can be studied to determine whether they possess some mucoadhesive properties as several excipients derived from plants have proved their potential in the field of conventional or novel dosage form. The present work aims at determination of physical properties of polysaccharides from fruit pulp of Ziziphus mauritiana L. (ZM gum) and Artocarpus heterophyllus L. (AH gum), such as mucoadhesive strength (shear stress determination), swelling index, pH, viscosity, angle of repose, Carr’s index, density, and its comparative study with synthetic polymers Carbopol 934 and HPMC and also to study its FTIR and 1H-NMR spectra analysis. Result The most important properties such as mucoadhesive strength of ZM gum (3% w/v) and AH gum (3%) was found to be comparable with HPMC (3% w/v) and Carbopol 934 (3% w/v); also, the swelling index of the isolated gums were also found comparable with both HPMC and Carbopol 934. Falling sphere method is conducted in which the time taken by the sphere to move 50 divisions to the bottom for 3% w/v ZM gum solution was 10.14 s and for AH gum was 10.13 s which is comparable to HPMC and Carbopol 934. The FTIR & 1H NMR spectra showed typical characteristic signals of polysaccharides and presence of typical sugar residues. Conclusion From the study, it can be concluded that ZM and AH gum has potential to be better than Carbopol 934 and HPMC in respect of mucoadhesive strength and also it has the potential to replace some synthetic mucoadhesive polymers and polysaccharides.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3