Virtual screening, pharmacokinetics, and molecular dynamics simulations studies to identify potent approved drugs for Chlamydia trachomatis treatment

Author:

Edache Emmanuel IsraelORCID,Uzairu Adamu,Shallangwa Gideon Adamu,Mamza Paul Andrew

Abstract

Abstract Background The most frequent bacterial sexually transmitted disease is Chlamydia trachomatis (STD). In 2010, the Centers for Disease Control and Prevention (CDC) received 1.3 million reports of cases (CDC). Human chlamydial infections are linked to a variety of clinical symptoms. Inclusion (IncA) membranes are a promising drug target for the treatment of Chlamydia trachomatis. In the present study, molecular docking, ADMET, golden triangle, and molecular dynamics (MD) simulation studies were performed on a series of salicylidene acylhydrazides derivatives against Chlamydia trachomatis. Three types of docking software with different algorithms were used to screen the potential candidate against Chlamydia trachomatis. Results The results obtained from the docking analysis succeeded in screening nine novel hit compounds with high affinity to IncA membranes. Then, pharmacokinetics properties were calculated to spot out the drug-likeness of the selected compounds. Also, golden triangles were performed on the selected compounds. Compounds outside the golden triangle indicate that they would have clearance problems. Out of the nine novel hits drugs, four compounds pass the golden triangle screening and virtually all the quality assurance tests proposed by the model and were used for further analysis. One-ns molecular dynamics simulations on the docked complex of compound 44 (one of the highly active selected compounds of the dataset) aided in the further exploration of the binding interactions. Some crucial residues such as Ser111, Gln114, Asn107, Leu142, Gly144, Gln143, Lys104, Tyr149, Phe108, Phe145, and Arg146 were identified. Conventional and carbon–hydrogen bond interactions with amino residues Arg146, Asn107, Phe145, and Ser111 were critical for the binding of inclusion (IncA) membranes inhibitors. Conclusion Outcomes of the study can further be exploited to develop potent inclusion (IncA) membranes inhibitors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3