Fabrication and characterization of sterically stabilized liposomes of topotecan

Author:

Patel Dasharath,Patel Niteshkumar

Abstract

AbstractBackgroundRecently, the development of drug delivery which delivers controlled drug release at the tumor sites emerged as an attractive option for enhancing anticancer therapeutics. Next-generation nanotherapeutics must not contain only the nanoscale but should find their way to the solid tumor via active or passive targeting. Surface modification by pegylated lipids is one of the approaches used to made liposomes long-circulating and passively target the tumor. Pegylation of liposomes help them to alter the pharmacokinetics of drug molecule in vivo. The successful journey of such a complex drug delivery system from bench to clinic requires in-depth understanding and characterization. In this research, we fabricated and characterized sterically stabilized liposomes of topotecan which meets the clinical need. Liposomes have been prepared using ethanol injection-solvent evaporation method followed by extrusion for size reduction. Outer medium was replaced with an isotonic sucrose solution using dialysis followed by drug loading. We characterized liposomes’ membrane phase and dynamics, drug and lipid quantification, size distribution, state of encapsulated drug, internal volume and internal pH of liposomes, presence, and thickness of grafted PEG on the liposomes surface, and in vitro leakage test.ResultsAll these studied parameters directly or indirectly provide information regarding the pharmacokinetic behavior of the formulation and the tumor-targeting property of the drugs in vivo. We encapsulated the topotecan in nanoliposomes with pegylation on the surface resulting in long-circulating stealth liposomes. Nanoliposomes remotely loaded with topotecan by transmembrane gradient method.ConclusionOur in vitro characterization of topotecan liposomes provides an explanation for the good therapeutic efficacy of tumor cells.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3