Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: pharmacokinetic and gamma scintigraphy studies

Author:

Shah BrijeshORCID,Khunt DigneshORCID,Misra ManjuORCID

Abstract

Abstract Background Treatment in neurological disorders like schizophrenia requires continuous presence of drug in the brain for a prolonged period of time to achieve an effective therapeutic response. Delivery of antipsychotic drug quetiapine in the form of conventional delivery systems suffers from low oral bioavailability, first-pass metabolism, and frequent dosing. In addition to that biological obstacles present at the brain interface also hinders the transport of quetiapine across the brain. In the present study, nasal delivery of quetiapine loaded nanoparticles and microemulsion formulation were designed to evaluate their individual in vivo potential to achieve brain targeting. Chitosan-based polymeric nanoparticles and mucoadhesive microemulsion systems were developed through ionic gelation and water titration method respectively. Results Microemulsion showed globule size lower than 50 nm with 95% drug loading while, nanoparticles exhibited 65% drug loading with particle size of 131 nm. Nasal diffusion study showed highest diffusion with chitosan-based mucoadhesive microemulsion over nanoparticles suggesting permeation-enhancing effects of chitosan. Due to the overall hydrophilic nature, quetiapine-loaded nanoparticles could not diffuse superiorly across nasal mucosa, hence, showed 1.3 times lesser diffusion compared to mucoadhesive microemulsion. Pharmacokinetics in rats showed highest brain concentration and 1.9-folds higher nasal bioavailability with mucoadhesive microemulsion over nanoparticles suggesting direct brain transport through olfactory route bypassing blood-brain barrier. Conclusion Higher quetiapine transport with mucoadhesive microemulsion suggested that synergistic effects like tight junction modulation by chitosan and unique composition facilitating smaller globule size could be responsible for higher brain transport. Imaging study by gamma scintigraphy also supported pharmacokinetic outcomes and concluded that mucoadhesive microemulsion could be a promising nanocarrier approach for non-invasive nose to brain delivery. Graphical abstract

Funder

Lady Tata Memorial Trust

Department of Science and Technology, Ministry of Science and Technology

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3