Abstract
Abstract
Background
Quinolones and cephalosporins are antibiotic agents with activity against Gram-positive and Gram-negative bacteria. They contain chromophores and amine groups which are electron-rich centres capable of donating electrons to electron-deficient compounds. A survey of the literature revealed that 2, 4-dinitro-1-naphthol, a nitroaromatic useful in chemical synthesis, can accept electrons in charge transfer reactions. This work investigates N-(2, 4-dinitro-1-naphthyl)-p-toluenesulphonamide and 2, 4-dinitro-1-naphthol in the formation of charge transfer complexes by accepting electrons from selected quinolones and cephalosporins. Five other nitroaromatics (i.e. 4-nitro-1-naphthylamine, 2-nitro-1-naphthol, 2,4-dinitro-1-naphthylamine, 1-nitronaphthalene and 1,4-dinitronaphthalene) were screened in addition to the aforementioned and compared for charge transfer complexes formation. Spot test was used to establish charge transfer complex formation at room and elevated temperatures with determination done by visual inspection and thin layer chromatographic analysis of the reaction mixture. Ultraviolet visible absorption spectroscopy was used to estimate the extent of complexes.
Results
Only solutions of adducts of N-(2, 4-dinitro-1-naphthyl)-p-toluenesulphonamide and 2, 4-dinitro-1-naphthol gave instant and distinct colour with each drug used at room and elevated temperature. While the former gave deep golden yellow, the latter gave golden yellow against their blank reagent solutions which were, lemon and greenish yellow respectively. Visual inspections of 2-nitro-1-naphthol adduct solutions showed no colour change from the yellow colour of the blank reagent solution, even though the Ultraviolet visible absorption spectra revealed the formation of charge transfer complexes. The adducts solutions of 4-nitro-1-naphthylamine, 2,4-dinitro-1-naphthylamine, 1-nitronaphthalene and 1,4-dinitronaphthalene showed no colour change from their blank reagent solutions and their Ultraviolet visible absorption spectra revealed no formation of charge transfer complexes.
Conclusion
Ultraviolet visible absorption spectral analysis shows superiority of N-(2, 4-dinitro-1-naphthyl)-p-toluenesulphonamide and 2, 4-dinitro-1-naphthol in charge-transfer complex formation over other nitroaromatics screened. N-(2, 4-dinitro-1-naphthyl)-p-toluenesulphonamide and 2, 4-dinitro-1-naphthol are good acceptors of electrons from these drugs, hence could be useful as charge transfer reagents in ultraviolet visible spectrophotometric analysis of these drugs.
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Martindale W (2002) The extra pharmacopoeia, 33rd edn. Royal Pharmaceutical Society, London
2. Sato K, Matsurra Y, Inoue M, Une T, Osada Y, Ogawa H, Mitsuhashi S (1982) In-vitro and in-vivo activity DL-8280 (or ofloxacin), a new oxazine. Antimicrob Agents Chemother 23:548–553
3. British Pharmacopoeia (1993) Vol 1 and 2 Her Majesty Stationery Office, London, pp 438 and 1019
4. British Pharmacopeia (2003) Vol 3 Her Majesty Stationery office, London, pp 1357–1358, A269–A276, A336–A337
5. Marona HR, Schapoval EE (2001) Development and validation of a non-aqueous titration with perchloric acid to determine sparfloxacin in tablets. Eur J Pharm Biopharm 52(2):227–229
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献