Empagliflozin mitigates methotrexate-induced nephrotoxicity in male albino rats: insights on the crosstalk of AMPK/Nrf2 signaling pathway

Author:

Mishriki Amal Anwar,Khalifa Amira Karam,Ibrahim Dina AnwarORCID,Hashem Ghada Mohamed Abdel Zaher,Rashed Laila Ahmed,Abdelrahman Sahar Samir,Mahmoud Hesham M.

Abstract

Abstract Background The anti-diabetic drug, empagliflozin (EMPA), has many pleiotropic actions and is challenged recently to possess renoprotective properties. This renoprotective potential is proposed to be mediated via the activation of AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. This research investigated the renoprotective potential and the mechanistic pathway of EMPA against methotrexate (MTX)-induced nephrotoxicity and evaluated the role of AMPK by utilizing an AMPK inhibitor, dorsomorphin (Dorso). Methods Thirty male Wistar rats, weighing 180–200 g, were divided equally into five groups. Group I represented the control group. Nephrotoxicity was induced in the remaining rats through the administration of a single intraperitoneal injection of MTX (20 mg/kg). Rats were then randomly assigned to: Group 2 (received MTX injection only); Group 3 (received MTX and EMPA 30 mg/kg/day); Group 4 (received MTX and Dorso 0.2 mg/kg/day), Group 5 (received MTX, Dorso, EMPA). After one week, blood samples were collected, the rats were euthanized, and renal tissues were harvested for biochemical and histomorphometric assessments. Results MTX produced a significant rise in serum creatinine and tissue MDA levels; an increase in BAX, p53, cytochrome-c expression; a reduction in Bcl2 level; and disruption of renal microarchitecture. In contrast, EMPA therapy in group 3, resulted in a significant improvement of all these parameters, correlated with significant increase in AMPK phosphorylation and Nrf2 expression. Importantly, the co-administration of Dorso, in group 5, prevented EMPA’s beneficial effects. Conclusion EMPA has a potential protective effect against MTX-induced toxicity through the activation of the AMPK/Nrf2 signaling pathway.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3