Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer

Author:

Shridhar Deshpande Narayan,Mahendra Gowdru Srinivasa,Aggarwal Natasha Naval,Gatphoh Banylla Felicity Dkhar,Revanasiddappa Bistuvalli Chandrashekharappa

Abstract

Abstract Background Poly(ADP-ribose) polymerases (PARPs), a nuclear protein belongs to a new class of drugs, which mainly target tumours with DNA repair defects. They are mainly involved in the multiple cellular processes in addition to the DNA repair process. They act directly on the base excision repair, which is considered as one of the important pathway for cell survival in breast cancer. These belong to the active members of DNA repair assembly and evolved as a key target in the anti-cancer drug discovery. 1,3,4-Oxadiazoles are also well known anticancer agents. Results A novel series of 1,3,4-oxadiazoles linked to Schiff bases (T1-21) were designed and subjected to In-silico analysis against PARP-1 (PDB ID:5DS3) enzyme targeting against breast cancer. Molecular docking study for the designed compounds (T1-21) was performed by In-silico ADMET screening by QikProp module, Glide module and MM-GBSA binding free energy calculations by using Schrodinger suit 2019–2. The PARP-1 enzyme shows the binding affinity against the newly designed molecules (T1-21) based on the glide scores. Compounds T21, T12 showed very good glide score by the molecular docking studies and compared with the standard Tamoxifen. The binding free energies by the MM-GBSA assay were found to be consistent. The pharmacokinetic (ADMET) parameters of all the newly designed compounds were found to be in the acceptable range. Conclusion The selected 1,3,4-oxadiazole-schiff base conjugates seems to be one of the potential source for the further development of anticancer agents against PARP-1 enzyme. The results revealed that some of the compounds T21, T17, T14, T13, T12, T8 with good glide scores showed very significant activity against breast cancer

Publisher

Springer Science and Business Media LLC

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3