Preclinical study on camellia sinensis extract-loaded nanophytosomes for enhancement of memory-boosting activity: optimization by central composite design

Author:

Mane VarshaORCID,Killedar Suresh,More Harinath,Tare Harshal

Abstract

Abstract Background The purpose of the present study was to enhance the memory-boosting activity of the standardized hydroalcoholic Camellia sinensis extract (CSE) by the formation of nanophytosomes with Leciva S70 phospholipid. The central composite design was used to optimize the solvent evaporation method for the formulation of C. sinesis phytosomes (CSP). Results The optimized formulation had a mean particle size of 212.3 nm ± 0.39, PDI of 0.238 ± 0.0197, and zeta potential of −42.02 ± 0.995 mV. C. sinensis phytosome formation was confirmed by analytical techniques. The aqueous solubility of the developed CSP was 95.92 ± 0.31, which is 7.34 times greater than that of pure CSE (13.07 ± 0.19). CSP was found more effective than either pure CSE (26.42 ± 0.4654%) or the physical mixture (32.15 ± 0.4596%) in releasing the CSE from the formulation (72.16 ± 0.5248%). Acute toxicity study corroborated the safety of CSP in rats. CSP demonstrated a significant (p < 0.05) reduction in escape and transferred latency on both days (15th and 16th) as compared to CSE, indicating the improvement of the memory-boosting activity. Furthermore, CSP-treated rats significantly improved acetylcholine (Ach) levels and brain tissue concentration compared with CSE. Moreover, the phytosomal formulation of CSP exhibited its rationality with an improvement of bioavailability by 3.21 folds compared with pure CSE. Conclusion The presence of phospholipids in the CSP formulation and the formation of smaller particles may aid in crossing the blood–brain barrier, increasing brain tissue concentration and bioavailability. This, in turn, leads to an increase in memory-boosting activity. Graphical abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3