Application of data-intelligence algorithms for modeling the compaction performance of new pharmaceutical excipients

Author:

Khalid Garba M.ORCID,Usman Abdullahi G.

Abstract

Abstract Background Pharmaceutical excipient development is an extensive process requiring a series of pre-formulation studies to evaluate their performance. The present study compares the conventional compaction and compression pre-formulation studies with artificial intelligence (AI) modeling to predict the performances of thermally and chemically modified starches obtained from Livingstone potato. Results The native starch was modified by three methods, and we obtained the following starches; pregelatinized starch (PS), ethanol dehydrated pregelatinized starch (ES), and acid hydrolyzed starch (AS). Microcrystalline cellulose (Avicel® PH101) was employed as a reference since its use in tablet direct compression has been established. The role of compaction pressure on the degree of volume reduction of the tablets was studied using Kawakita and Heckel models which highlighted that when the starch is modified by pregelatinization followed by ethanol dehydration, and/and or acid hydrolysis modification, a directly compressible starch can be obtained that can plastically deform. The data-intelligence results indicated the reliability of the AI-based models over the linear models. Hence, the comparative results demonstrated that the Adaptive neuro-fuzzy inference system (ANFIS) outperformed the other two models in modeling the performance of all of the four excipients with considerable performance accuracy. Conclusion The compressibility indices have shown matching characteristics of AS and ES to Avicel® PH101 in terms of direct compressibility potential than PS. Moreover, the data intelligence modeling demonstrates the reliability and satisfactory of ANFIS as a hybrid model over the other two models with increased performance skills in modeling the compaction properties of these novel pharmaceutical excipients.

Publisher

Springer Science and Business Media LLC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3