Development of trigger sensitive hyaluronic acid/palm oil-based organogel for in vitro release of HIV/AIDS microbicides using artificial neural networks

Author:

Ilomuanya M. O.,Elesho R. F.,Amenaghawon A. N.,Adetuyi A. O.,Velusamy Vijayalakshimi,Akanmu A. S.

Abstract

Abstract Background Efficient and effective chemotherapeutic methods designed to prevent the continuous spread of HIV/AIDS is essential to break the cycle of new infections. The use of condoms has been seen to be effective in prevention of HIV and STIs but its lack of use especially in vulnerable population is a deterrent to its overall success as a control method. Utilization of topical microbicide to curb the spread of HIV follows the current paradigm for HIV prevention in at risk individuals. The objective of this study was to develop and evaluate hyaluronic acid/palm oil-based organogel loaded with maraviroc (MRV) which would be released using hyaluronidase as the trigger for pre-exposure prophylaxis of HIV. Results The organogels had average globules size 581.8 ± 3.9 nm, and were stable after three freeze thaw cycles; the thermosensitive and HA sensitivity was achieved via incorporation of hyaluronic acid and dicaprylate esters in the organogel with thermogelation occurring at 34.1 °C. Artificial neural network was used to model and optimize mucin absorption and flux. These responses were predicted using the multilayer full feed forward (MFFF) and the multilayer normal feed forward (MNFF) neural networks. Optimized organogel showed the mucin adsorption and flux was 70.84% and 4.962 μg/cm2/min1/2, hence MRV was adequately released via triggers of temperature and HA. The MRV organogel showed inhibition HIV − 1 via TZM-bl indicator cells. Compared to control HeLa cells without any treatment, MRV organogel was not cytotoxic for 14 days in vitro. Conclusion These data highlight the potential use of hyaluronic acid/palm oil-based organogel for vaginal delivery of anti-HIV microbicides. This can serve as a template for more studies on such formulations in the area of HIV prevention.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3