Development and validation of ICPMS methods for simultaneous determination of elemental impurities in topical cream containing ximenynic acid

Author:

Shivatare Rakesh,Jangra Sarita,Gaikwad Asmita,Kewatkar Shailesh,Bhutale Neetin,Suryavanshi Dhanaji S.,Tare Harshal

Abstract

Abstract Background These days, the presence of simple impurities in pharmaceuticals is a major cause for worry. This is because some contaminants are dangerous on their own, and even small impurities can make a drug less stable and shorten its shelf life. The goal of this study was to see if creams with ximenynic acid could be tested with inductively coupled plasma-mass spectrometry to find out how much arsenic, mercury, lead, cadmium, vanadium, cobalt, and nickel were in them. The best way to do things would be one that was quick, accurate, sensitive, and very productive (ICP-MS). The method included both inductively coupled plasma mass spectrometry (ICP-MS) and microwave digestion. Results Seven of the seven linearity correlation coefficient (‘R’) value were more than 0.99. LOD values were calculated using 33% of the 0.25 J threshold. Six LOQ responses (0.25 J level) were taken after considerable discussion. Calculated and reported %RSD for six LOQ copies. All elemental impurities Vanadium (V), Cobalt (Co), Nickel (Ni), Arsenic (As), Cadmium (Cd), Mercury (Hg), and Lead (Pb) were recovered between 83.33% and 115.97%, within acceptability limits. RSD% for procedure precision and intermediate precision data never exceeded 5%. The available evidence shows that the ICP-MS technique is a good way to measure these components. Conclusion The statistical analysis showed that the developed ICP-MS method for measuring elements in Topical Cream with Ximenynic Acid is selective and accurate. Since this ICPMS method is good at estimating several elements simultaneously, it could be used to check for elemental contaminants in the formulation.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3