Author:
Álvarez-Iglesias Vanesa,Mosquera-Miguel Ana,Cuscó Ivón,Carracedo Ángel,Pérez-Jurado Luis Alberto,Salas Antonio
Abstract
Abstract
Background
There is increasing evidence that impairment of mitochondrial energy metabolism plays an important role in the pathophysiology of autism spectrum disorders (ASD; OMIM number: 209850). A significant proportion of ASD cases display biochemical alterations suggestive of mitochondrial dysfunction and several studies have reported that mutations in the mitochondrial DNA (mtDNA) molecule could be involved in the disease phenotype.
Methods
We analysed a cohort of 148 patients with idiopathic ASD for a number of mutations proposed in the literature as pathogenic in ASD. We also carried out a case control association study for the most common European haplogroups (hgs) and their diagnostic single nucleotide polymorphisms (SNPs) by comparing cases with 753 healthy and ethnically matched controls.
Results
We did not find statistical support for an association between mtDNA mutations or polymorphisms and ASD.
Conclusions
Our results are compatible with the idea that mtDNA mutations are not a relevant cause of ASD and the frequent observation of concomitant mitochondrial dysfunction and ASD could be due to nuclear factors influencing mitochondrion functions or to a more complex interplay between the nucleus and the mitochondrion/mtDNA.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference41 articles.
1. Abrahams BS, Geschwind DH: Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008, 9 (5): 341-355. 10.1038/nrg2346.
2. Oliveira G, Diogo L, Grazina M, Garcia P, Ataide A, Marques C, Miguel T, Borges L, Vicente AM, Oliveira CR: Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005, 47 (3): 185-189. 10.1017/S0012162205000332.
3. Veenstra-VanderWeele J, Cook EH: Molecular genetics of autism spectrum disorder. Mol Psychiatry. 2004, 9 (9): 819-832. 10.1038/sj.mp.4001505.
4. Geschwind DH: Advances in autism. Annu Rev Med. 2009, 60: 367-380. 10.1146/annurev.med.60.053107.121225.
5. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, et al: Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献