Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndrome

Author:

Schüle Birgitt,Albalwi Mohammed,Northrop Emma,Francis David I,Rowell Margaret,Slater Howard R,Gardner RJ McKinlay,Francke Uta

Abstract

Abstract Background Prader-Willi syndrome (MIM #176270; PWS) is caused by lack of the paternally-derived copies, or their expression, of multiple genes in a 4 Mb region on chromosome 15q11.2. Known mechanisms include large deletions, maternal uniparental disomy or mutations involving the imprinting center. De novo balanced reciprocal translocations in 5 reported individuals had breakpoints clustering in SNRPN intron 2 or exon 20/intron 20. To further dissect the PWS phenotype and define the minimal critical region for PWS features, we have studied a 22 year old male with a milder PWS phenotype and a de novo translocation t(4;15)(q27;q11.2). Methods We used metaphase FISH to narrow the breakpoint region and molecular analyses to map the breakpoints on both chromosomes at the nucleotide level. The expression of genes on chromosome 15 on both sides of the breakpoint was determined by RT-PCR analyses. Results Pertinent clinical features include neonatal hypotonia with feeding difficulties, hypogonadism, short stature, late-onset obesity, learning difficulties, abnormal social behavior and marked tolerance to pain, as well as sticky saliva and narcolepsy. Relative macrocephaly and facial features are not typical for PWS. The translocation breakpoints were identified within SNRPN intron 17 and intron 10 of a spliced non-coding transcript in band 4q27. LINE and SINE sequences at the exchange points may have contributed to the translocation event. By RT-PCR of lymphoblasts and fibroblasts, we find that upstream SNURF/SNRPN exons and snoRNAs HBII-437 and HBII-13 are expressed, but the downstream snoRNAs PWCR1/HBII-85 and HBII-438A/B snoRNAs are not. Conclusion As part of the PWCR1/HBII-85 snoRNA cluster is highly conserved between human and mice, while no copy of HBII-438 has been found in mouse, we conclude that PWCR1/HBII-85 snoRNAs is likely to play a major role in the PWS- phenotype.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3