Author:
Choudhury Ananya,Elliott Faye,Iles Mark M,Churchman Michael,Bristow Robert G,Bishop D Timothy,Kiltie Anne E
Abstract
Abstract
Background
Chemicals from occupational exposure and components of cigarette smoke can cause DNA damage in bladder urothelium. Failure to repair DNA damage by DNA repair proteins may result in mutations leading to genetic instability and the development of bladder cancer. Immunohistochemistry studies have shown DNA damage signal activation in precancerous bladder lesions which is lost on progression, suggesting that the damage signalling mechanism acts as a brake to further tumorigenesis. Single nucleotide polymorphisms (SNPs) in DSB signalling genes may alter protein function. We hypothesized that SNPs in DSB signalling genes may modulate predisposition to bladder cancer and influence the effects of environmental exposures.
Methods
We recruited 771 cases and 800 controls (573 hospital-based and 227 population-based from a previous case-control study) and interviewed them regarding their smoking habits and occupational history. DNA was extracted from a peripheral blood sample and genotyping of 24 SNPs in MRE11, NBS1, RAD50, H2AX and ATM was undertaken using an allelic discrimination method (Taqman).
Results
Smoking and occupational dye exposure were strongly associated with bladder cancer risk. Using logistic regression adjusting for age, sex, smoking and occupational dye exposure, there was a marginal increase in risk of bladder cancer for an MRE11 3'UTR SNP (rs2155209, adjusted odds ratio 1.54 95% CI (1.13–2.08, p = 0.01) for individuals homozygous for the rare allele compared to those carrying the common homozygous or heterozygous genotype). However, in the hospital-based controls, the genotype distribution for this SNP deviated from Hardy-Weinberg equilibrium. None of the other SNPs showed an association with bladder cancer and we did not find any significant interaction between any of these polymorphisms and exposure to smoking or dye exposure.
Conclusion
Apart from a possible effect for one MRE11 3'UTR SNP, our study does not support the hypothesis that SNPs in DSB signaling genes modulate predisposition to bladder cancer.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference43 articles.
1. Kogevias M, Trichopoulos D: Urinary Bladder Cancer. 2002, New York: Oxford University Press
2. Cooke MS, Evans MD, Dizdaroglu M, Lunec J: Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J. 2003, 17: 1195-1214. 10.1096/fj.02-0752rev.
3. Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature. 2004, 432: 316-323. 10.1038/nature03097.
4. Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z: Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle. 2006, 5: 1940-1945.
5. Bristow RG, Hill RP: Molecular and Cellular Radiobiology; Chapter 14. Basic Science of Oncology. Edited by: Tannock IF HR, Harrington L, Bristow RG. 2005, New York: McGraw-Hill, 4
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献