N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson's disease

Author:

Borlak Juergen,Reamon-Buettner Stella Marie

Abstract

Abstract Background Parkinson's disease (PD) is a movement disorder caused by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The molecular basis of this neural death is unknown, but genetic predisposition and environmental factors may cause the disease. Sequence variations in N-acetyltransferase 2 (NAT2) gene leading to slow acetylation process have been associated with PD, but results are contradictory. Methods We analyzed three NAT2 genetic variations, c.481C>T, c.590G>A (p.R197Q) and c.857G>A (p.G286E), which are known to result in a slow acetylator phenotype. Using validated PCR-RFLP assays, we genotyped 243 healthy unrelated Caucasian control subjects and 124 PD patients for these genetic variations. Further, we have undertaken a systematic review of NAT2 studies on PD and we incorporated our results in a meta-analysis consisting of 10 studies, 1,206 PD patients and 1,619 control subjects. Results Overall, we did not find significant differences in polymorphic acetylation genotypes in PD and control subjects. In the meta-analysis of slow acetylators from 10 studies and representing 604/1206 PD vs. 732/1619 control subjects, a marginally significant odds ratio (OR) of 1.32 (95% CI 1.12–1.54, p < 0.05) was obtained. Re-analysis of the data to exclude the only two studies showing positive association of slow acetylators to PD, resulted in a non-significant OR (1.07, 95% CI 0.9–1.28). Furthermore, meta-analysis of studies for c.590G>A, where both allele and genotype frequencies in PD vs. control subjects were analyzed, did not give significant summary odds ratios as well. Conclusion We found little evidence for differences in polymorphic acetylation genotypes in PD and control subjects. Results of the meta-analyses did not also provide conclusive evidence for an overall association of NAT2 slow acetylator genotypes to PD.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3