PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients

Author:

Swart Marelize,Whitehorn Heather,Ren Yuan,Smith Peter,Ramesar Rajkumar S,Dandara Collet

Abstract

Abstract Background This study investigated variation in NR1I2 and NR1I3 and its effect on plasma efavirenz levels in HIV/AIDS patients. Variability in plasma drug levels has largely led research on identifying causative variants in drug metabolising enzyme (DME) genes, with little focus on the nuclear receptor genes NR1I2 and NR1I3, coding for PXR and CAR, respectively, that are involved in regulating DMEs. Methods 464 Bantu-speaking South Africans comprising of HIV/AIDS patients on efavirenz-based treatment (n=301) and 163 healthy subjects were genotyped for 6 SNPs in NR1I2 and NR1I3. 32 of the 301 patients had their DNA binding domains (DBDs) in NR1I2 and NR1I3 sequenced. Results Significantly decreased efavirenz plasma concentrations were observed in patients carrying the NR1I3 rs3003596C/C and T/C genotypes (P=0.015 and P=0.010, respectively). Sequencing resulted in the discovery of a further 13 SNPs, 3 of which are novel variants in the DBD of NR1I2. There were significant differences in the distribution of NR1I2 and NR1I3 SNPs between South Africans when compared to Caucasian, Asian and Yoruba population groups. Conclusion For the realisation of personalised medicine, PXR and CAR genetic variation should be taken into consideration because of their involvement in the regulation of DMEs.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Reference31 articles.

1. Wang H, LeCluyse EL: Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin Pharmacokinet. 2003, 42 (15): 1331-1357. 10.2165/00003088-200342150-00003.

2. Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D: Nuclear receptors in the multidrug esistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012, 56: 2153-2157.

3. Piedade R, Schaeffeler E, Winter S, Asimus S, Schwab M, Ashton M, Burk O, Gil JP: PXR variants and artemisinin use in Vietnamese subjects: Frequency distribution and impact on the inter-individual variability of CYP3A induction by artemisinin. Antimicrob Agents Chemother. 2012, 83: 1112-1126.

4. Handschin C, Meyer UA: Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003, 55 (4): 649-673. 10.1124/pr.55.4.2.

5. Zhang J, Kuehl P, Green ED, Touchman JW, Watkins PB, Daly A, Hall SD, Maurel P, Relling M, Brimer C, et al: The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics. 2001, 11 (7): 555-572. 10.1097/00008571-200110000-00003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3