Author:
Curtain Robert,Sundholm James,Lea Rod,Ovcaric Mick,MacMillan John,Griffiths Lyn
Abstract
Abstract
Background
Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels.
Methods
The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis.
Results
Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40).
Conclusion
This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference35 articles.
1. Headache Classification Subcommittee of the International Headache Society: The international classification of headache disorders: 2nd edition. Cephalalgia. 2004, 24 (suppl 1): 9-160.
2. Ulrich V, Gervil M, Kyvik KO, Olesen J, Russell MB: The inheritance of migraine with aura estimated by means of structural equation modelling. J Med Genet. 1999, 36 (3): 225-7.
3. Launer LJ, Terwindt GM, Ferrari MD: The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology. 1999, 53: 537-542.
4. Owen MJ, McGuffin P: Association and linkage: complimentary strategies for complex disorders. J Med Genet. 1993, 30: 638-639.
5. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science. 1996, 273: 1516-1517.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献