Author:
Salih Niven A,Hussain Ayman A,Almugtaba Ibrahim A,Elzein Abeir M,Elhassan Ibrahim M,Khalil Eltahir AG,Ishag Hani B,Mohammed Hiba S,Kwiatkowski Dominic,Ibrahim Muntaser E
Abstract
Abstract
Background
Probably the best example of the rise and maintenance of balancing selection as an evolutionary trend is the role of S-haemoglobin (HbS - rs334) in protecting from malaria. Yet, the dynamics of such a process remains poorly understood, particularly in relation to different malaria transmission rates and the genetic background of the affected populations.
Methods
We investigated the association of haemoglobin HbS in protection from clinical episodes of malaria in two populations/villages where malaria is endemic, but mostly presenting in mild clinical forms. Five-hundred and forty-six individuals comprising 65 and 82 families from the Hausa and Massalit villages respectively were genotyped for HbS. Allele and genotype frequencies as well as departure from Hardy-Weinberg Equilibrium were estimated from four-hundred and seventy independent genotypes across different age groups. Age-group frequencies were used to calculate the coefficient-of-fitness and to simulate the expected frequencies in future generations.
Results
Genotype frequencies were within Hardy-Weinberg expectations in Hausa and Massalit in the total sample set but not within the different age groups. There was a trend for a decrease of the HbS allele frequency in Hausa and an increase of frequency in Massalit. Although the HbS allele was able to confer significant protection from the clinical episodes of malaria in the two populations, as suggested by the odds ratios, the overall relative fitness of the HbS allele seems to have declined in Hausa.
Conclusions
Such loss of balancing selection could be due to a combined effect of preponderance of non-clinical malaria in Hausa, and the deleterious effect of the homozygous HbS under circumstances of endogamy.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference20 articles.
1. Haldane JBS: The rate of mutation of human genes. Heredita. 1949, 35 (suppl): 267-273.
2. Allison AC: The sickle-cell and haemoglobin C genes in some African populations. Ann Hum Genet. 1956, 21: 67-89. 10.1111/j.1469-1809.1971.tb00266.x.
3. Cavalli-Sforza LL, Bodmer WF: The genetics of human populations. 1971, 2: 39-40.3.
4. Hedrick P: Estimation of relative fitnesses from relative risk data and the predicted future of haemoglobin alleles S and C. J Evol Biol. 2004, 17: 221-224. 10.1046/j.1420-9101.2003.00635.x.
5. Lanclos KD, Oner C, Dimovski AJ, Gu YC, Huisman TH: Sequence variations in the 5' flanking and IVS-II regions of the G gamma- and A gamma-globin genes of βS chromosomes with five different haplotypes. Blood. 1991, 77 (11): 2488-96.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献