Abstract
Abstract
Background
Previous deep learning methods for predicting protein binding pockets mainly employed 3D convolution, yet an abundance of convolution operations may lead the model to excessively prioritize local information, thus overlooking global information. Moreover, it is essential for us to account for the influence of diverse protein folding structural classes. Because proteins classified differently structurally exhibit varying biological functions, whereas those within the same structural class share similar functional attributes.
Results
We proposed LVPocket, a novel method that synergistically captures both local and global information of protein structure through the integration of Transformer encoders, which help the model achieve better performance in binding pockets prediction. And then we tailored prediction models for data of four distinct structural classes of proteins using the transfer learning. The four fine-tuned models were trained on the baseline LVPocket model which was trained on the sc-PDB dataset. LVPocket exhibits superior performance on three independent datasets compared to current state-of-the-art methods. Additionally, the fine-tuned model outperforms the baseline model in terms of performance.
Scientific contribution
We present a novel model structure for predicting protein binding pockets that provides a solution for relying on extensive convolutional computation while neglecting global information about protein structures. Furthermore, we tackle the impact of different protein folding structures on binding pocket prediction tasks through the application of transfer learning methods.
Graphical Abstract
Funder
Ab initio design and generation of AI models for small molecule ligands based on target structures
A study on the diagnosis of addiction to synthetic cannabinoids and methods of assessing the risk of abuse
The research on key technologies for monitoring and identifying drug abuse of anesthetic drugs and psychotropic drugs, and intervention for addiction
Publisher
Springer Science and Business Media LLC