Open-source QSAR models for pKa prediction using multiple machine learning approaches

Author:

Mansouri KamelORCID,Cariello Neal F.ORCID,Korotcov Alexandru,Tkachenko Valery,Grulke Chris M.ORCID,Sprankle Catherine S.ORCID,Allen David,Casey Warren M.,Kleinstreuer Nicole C.ORCID,Williams Antony J.ORCID

Abstract

Abstract Background The logarithmic acid dissociation constant pKa reflects the ionization of a chemical, which affects lipophilicity, solubility, protein binding, and ability to pass through the plasma membrane. Thus, pKa affects chemical absorption, distribution, metabolism, excretion, and toxicity properties. Multiple proprietary software packages exist for the prediction of pKa, but to the best of our knowledge no free and open-source programs exist for this purpose. Using a freely available data set and three machine learning approaches, we developed open-source models for pKa prediction. Methods The experimental strongest acidic and strongest basic pKa values in water for 7912 chemicals were obtained from DataWarrior, a freely available software package. Chemical structures were curated and standardized for quantitative structure–activity relationship (QSAR) modeling using KNIME, and a subset comprising 79% of the initial set was used for modeling. To evaluate different approaches to modeling, several datasets were constructed based on different processing of chemical structures with acidic and/or basic pKas. Continuous molecular descriptors, binary fingerprints, and fragment counts were generated using PaDEL, and pKa prediction models were created using three machine learning methods, (1) support vector machines (SVM) combined with k-nearest neighbors (kNN), (2) extreme gradient boosting (XGB) and (3) deep neural networks (DNN). Results The three methods delivered comparable performances on the training and test sets with a root-mean-squared error (RMSE) around 1.5 and a coefficient of determination (R2) around 0.80. Two commercial pKa predictors from ACD/Labs and ChemAxon were used to benchmark the three best models developed in this work, and performance of our models compared favorably to the commercial products. Conclusions This work provides multiple QSAR models to predict the strongest acidic and strongest basic pKas of chemicals, built using publicly available data, and provided as free and open-source software on GitHub.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Reference70 articles.

1. Wikipedia (2019) Acid dissociation constant. https://en.wikipedia.org/w/index.php?title=Acid_dissociation_constant&oldid=897688731 . Accessed 21 May 2019

2. US EPA-OCSPP (2015) Guidance for reporting on the environmental fate and transport of the stressors of concern in problem formulations. In: US EPA. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-reporting-environmental-fate-and-transport . Accessed 21 May 2019

3. Klöpffer W, Rippen G, Frische R (1982) Physicochemical properties as useful tools for predicting the environmental fate of organic chemicals. Ecotoxicol Environ Saf 6:294–301. https://doi.org/10.1016/0147-6513(82)90019-7

4. Linde CD (1994) Physico-chemical properties and environmental fate of pesticides. In: Environmental hazards assessment program, state of California EPA. http://agris.fao.org/agris-search/search.do?recordID=US201300074742 . Accessed 21 May 2019

5. National Research Council (2014) A framework to guide selection of chemical alternatives. The National Academies Press, Washington, D.C. https://doi.org/10.17226/18872

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3