Visualization of very large high-dimensional data sets as minimum spanning trees

Author:

Probst DanielORCID,Reymond Jean-LouisORCID

Abstract

AbstractThe chemical sciences are producing an unprecedented amount of large, high-dimensional data sets containing chemical structures and associated properties. However, there are currently no algorithms to visualize such data while preserving both global and local features with a sufficient level of detail to allow for human inspection and interpretation. Here, we propose a solution to this problem with a new data visualization method, TMAP, capable of representing data sets of up to millions of data points and arbitrary high dimensionality as a two-dimensional tree (http://tmap.gdb.tools). Visualizations based on TMAP are better suited than t-SNE or UMAP for the exploration and interpretation of large data sets due to their tree-like nature, increased local and global neighborhood and structure preservation, and the transparency of the methods the algorithm is based on. We apply TMAP to the most used chemistry data sets including databases of molecules such as ChEMBL, FDB17, the Natural Products Atlas, DSSTox, as well as to the MoleculeNet benchmark collection of data sets. We also show its broad applicability with further examples from biology, particle physics, and literature.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3