Application of deep metric learning to molecular graph similarity

Author:

Coupry Damien E.ORCID,Pogány Peter

Abstract

AbstractGraph based methods are increasingly important in chemistry and drug discovery, with applications ranging from QSAR to molecular generation. Combining graph neural networks and deep metric learning concepts, we expose a framework for quantifying molecular graph similarity based on distance between learned embeddings separate from any endpoint. Using a minimal definition of similarity, and data from the ZINC database of public compounds, this work demonstrate the properties of the embedding and its suitability for a range of applications, among them a novel reconstruction loss method for training deep molecular auto-encoders. Finally, we compare the applications of the embedding to standard practices, with a focus on known failure points and edge cases; concluding that our approach can be used in conjunction to existing methods.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3