Applying atomistic neural networks to bias conformer ensembles towards bioactive-like conformations

Author:

Baillif Benoit,Cole Jason,Giangreco Ilenia,McCabe Patrick,Bender Andreas

Abstract

AbstractIdentifying bioactive conformations of small molecules is an essential process for virtual screening applications relying on three-dimensional structure such as molecular docking. For most small molecules, conformer generators retrieve at least one bioactive-like conformation, with an atomic root-mean-square deviation (ARMSD) lower than 1 Å, among the set of low-energy conformers generated. However, there is currently no general method to prioritise these likely target-bound conformations in the ensemble. In this work, we trained atomistic neural networks (AtNNs) on 3D information of generated conformers of a curated subset of PDBbind ligands to predict the ARMSD to their closest bioactive conformation, and evaluated the early enrichment of bioactive-like conformations when ranking conformers by AtNN prediction. AtNN ranking was compared with bioactivity-unaware baselines such as ascending Sage force field energy ranking, and a slower bioactivity-based baseline ranking by ascending Torsion Fingerprint Deviation to the Maximum Common Substructure to the most similar molecule in the training set (TFD2SimRefMCS). On test sets from random ligand splits of PDBbind, ranking conformers using ComENet, the AtNN encoding the most 3D information, leads to early enrichment of bioactive-like conformations with a median BEDROC of 0.29 ± 0.02, outperforming the best bioactivity-unaware Sage energy ranking baseline (median BEDROC of 0.18 ± 0.02), and performing on a par with the bioactivity-based TFD2SimRefMCS baseline (median BEDROC of 0.31 ± 0.02). The improved performance of the AtNN and TFD2SimRefMCS baseline is mostly observed on test set ligands that bind proteins similar to proteins observed in the training set. On a more challenging subset of flexible molecules, the bioactivity-unaware baselines showed median BEDROCs up to 0.02, while AtNNs and TFD2SimRefMCS showed median BEDROCs between 0.09 and 0.13. When performing rigid ligand re-docking of PDBbind ligands with GOLD using the 1% top-ranked conformers, ComENet ranked conformers showed a higher successful docking rate than bioactivity-unaware baselines, with a rate of 0.48 ± 0.02 compared to CSD probability baseline with a rate of 0.39 ± 0.02. Similarly, on a pharmacophore searching experiment, selecting the 20% top-ranked conformers ranked by ComENet showed higher hit rate compared to baselines. Hence, the approach presented here uses AtNNs successfully to focus conformer ensembles towards bioactive-like conformations, representing an opportunity to reduce computational expense in virtual screening applications on known targets that require input conformations.

Funder

Cambridge Crystallographic Data Centre

University of Cambridge

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3