Activity landscape image analysis using convolutional neural networks

Author:

Iqbal Javed,Vogt Martin,Bajorath JürgenORCID

Abstract

AbstractActivity landscapes (ALs) are graphical representations that combine compound similarity and activity data. ALs are constructed for visualizing local and global structure–activity relationships (SARs) contained in compound data sets. Three-dimensional (3D) ALs are reminiscent of geographical maps where differences in landscape topology mirror different SAR characteristics. 3D AL models can be stored as differently formatted images and are thus amenable to image analysis approaches, which have thus far not been considered in the context of graphical SAR analysis. In this proof-of-concept study, 3D ALs were constructed for a variety of compound activity classes and 3D AL image variants of varying topology and information content were generated and classified. To these ends, convolutional neural networks (CNNs) were initially applied to images of original 3D AL models with color-coding reflecting compound potency information that were taken from different viewpoints. Images of 3D AL models were transformed into variants from which one-dimensional features were extracted. Other machine learning approaches including support vector machine (SVM) and random forest (RF) algorithms were applied to derive models on the basis of such features. In addition, SVM and RF models were trained using other features obtained from images through edge filtering. Machine learning was able to accurately distinguish between 3D AL image variants with different topology and information content. Overall, CNNs which directly learned feature representations from 3D AL images achieved highest classification accuracy. Predictive performance for CNN, SVM, and RF models was highest for image variants emphasizing topological elevation. In addition, SVM models trained on rudimentary images from edge filtering classified such images with high accuracy, which further supported the critical role of altitude-dependent topological features for image analysis and predictions. Taken together, the findings of our proof-of-concept investigation indicate that image analysis has considerable potential for graphical SAR exploration to systematically infer different SAR characteristics from topological features of 3D ALs.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multispectral Semantic Segmentation for Land Cover Classification: An Overview;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Exploring the Role of Chemoinformatics in Accelerating Drug Discovery: A Computational Approach;Methods in Molecular Biology;2023-09-08

3. Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond;Annual Review of Pharmacology and Toxicology;2023-01-20

4. Roughness of Molecular Property Landscapes and Its Impact on Modellability;Journal of Chemical Information and Modeling;2022-09-16

5. Machine Learning in Chemoinformatics and Medicinal Chemistry;Annual Review of Biomedical Data Science;2022-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3