AMADAR: a python-based package for large scale prediction of Diels–Alder transition state geometries and IRC path analysis

Author:

Isamura Bienfait K.,Lobb Kevin A.ORCID

Abstract

AbstractPredicting transition state geometries is one of the most challenging tasks in computational chemistry, which often requires expert-based knowledge and permanent human intervention. This short communication reports technical details and preliminary results of a python-based tool (AMADAR) designed to generate any Diels–Alder (DA) transition state geometry (TS) and analyze determined IRC paths in a (quasi-)automated fashion, given the product SMILES. Two modules of the package are devoted to performing, from IRC paths, reaction force analyses (RFA) and atomic (fragment) decompositions of the reaction force F and reaction force constant $$\kappa$$ κ . The performance of the protocol has been assessed using a dataset of 2000 DA cycloadducts retrieved from the ZINC database. The sequential location of the corresponding TSs was achieved with a success rate of 95%. RFA plots confirmed the reaction force constant $$\kappa$$ κ to be a good indicator of the (non)synchronicity of the associated DA reactions. Moreover, the atomic decomposition of $$\kappa$$ κ allows for the rationalization of the (a)synchronicity of each DA reaction in terms of contributions stemming from pairs of interacting atoms. The source code of the AMADAR tool is available on GitHub [CMCDD/AMADAR(github.com)] and can be used directly with minor customizations, mostly regarding the local working environment of the user. Graphical Abstract

Funder

Else Kröner-Fresenius-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3